Are Magnetically Controlled Growing Rods a Good Option for Collapsing Spine Deformity in Spinal Muscular Athropy Type-II Associated Early Onset Scoliosis?

Senol Bekmez¹, Alper Yataganbaba², Z.Deniz Olgun³, H.Gokhan Demirkiran², Muharrem Yazici²

¹Cankaya Hospital, Ankara, Turkey
²Hacettepe University, Ankara, Turkey
³University of Pittsburgh Medical Center (UPMC), PA, USA

• No disclosure!

SMA & Spine Deformity

- Collapsing spine deformity
 - C-shaped scoliosis / lack of compensation
 - Parasol rib deformity
 - Pelvic obliquity
 - Progression 5-15°/year
- Incidence is nearly 100%
 - Severe progression once patient becomes non-ambulatory
- Impairs functional status
 - Sitting imbalance
 - Unappealing cosmesis
 - Exacerbate pulmonary problems
- Conservative treatment fails
 - Bracing can not stop progression
 - Severe breathing impairment

SMA & Spine Deformity

SMA Туре	Age of Onset	Motor Milestones	Age of Death
1	< 6 months	Early onset scoli	ars iosis rd le
111	> 18 months	Stand and walk independently	Normal life expectancy
IV	Adolescent or adult onset	Retain walking, muscle pain	Normal life expectancy
Hacettepe Ortho	paedics		

GFT & SMA-related EOS

- SMA&Traditional Growing Rods
 - McElroy et al, Spine 2011

Stabilizes the spine deformity, ↑spinal height
Does not halt rib collapse
Longer hospital stay but fewer major complications than
idiopathic EOS

- Chandran et al, J Pediatr Orthop 2011
 Pulmonary functions maintained early after surgery (↑ FVC, 0,53 to 0.67 L)
- Lenhart et al, J Pediatr Orthop 2016

 Spinal height,
 Thoracic cavity size

 Absolute FVC

GFT& SMA-related EOS

- SMA & Eiffel tower MCGR
 - Lorenz HM, JBJS Open Access 2017
 - Bilateral rib to pelvis construct with a magnetically controlled implant
 - Good control in coronal plane (main curve&pelvic obliquity) and spinal height
 - Poor control in sagittal plane
 - Effects on pulmonary functions are unclear
 - ↓ complication rates
 - Ψ the burden of repetitive lengthening surgeries

Aim

- A new treatment algorithm
 - SMA type 2 EOS
 - Spine based MCGR
- Does this algorithm work?

Methods

- Prospective study
- Single institution
- Inclusion criteria
 - SMA type-II
 - EOS (<10 years)</p>
 - Collapsing spine deformity
 - Growing rods treatment with MCGR
 - >1 year follow-up
- Demographic, clinical, radiological information, surgical details and final status of the patients

- Mean f/u
 - 29.9 months (12-50)
- # Outpatient lengthening
 - 6.7
- Deformity
 - Cobb angle
 - 81.8° (66-115) \rightarrow 29° (11-57) \rightarrow 23.6° (12-50)
 - Pelvic Obliquity

•
$$21.9^{\circ}(8-30) \rightarrow 5.1^{\circ}(2-8) \rightarrow 4.4^{\circ}(2-7)$$

- T1-S1 height (mm)
 - **329** (280-376) → **356** (310-386)
 - 10.8 mm/year
- Thoracic kyphosis
 - 46.6 (28-66) (early postop) \rightarrow 54.2 (35-71) (last f/u)
- Lumbar lordosis
 43.5 (25-62) (early postop) → 46.1 (27-65) (last f/u)

Distal adding-on in 2 pts. w/o initial pelvic fixation

- Revised with extending the inst. to pelvis

Conclusion

- MCGR is a good option in SMA-related EOS
 - Reduce the burden of repetitive lengthening surgeries
 - Good coronal/sagittal plane deformity correction/maintenance
 - Low complication rates
- Algorithm does work!
 - Except stopping @ lumbar spine
 - Natural course of underlying disease!