Improvement of Functional Outcome Using 6-minute walk in Patients with Congenital Scoliosis Treated by Growth Friendly Surgery: Five Years Follow-up Study

Noriaki Kawakami¹⁾, Hiroko Matsumoto²⁾, Toshiki Saito¹⁾, Ryoji Tauchi¹⁾, Tetsuya Ohara¹⁾, Gregory Redding³⁾, Children Spine Study Group

- 1) Dept. Orthop & Spine Surg, Meijo Hosp
- 2) Dept. Pediatr Orthop, Columbia Univ
- 3) Dept. Pediatr, Seattle Child Hosp

Disclosure

 Noriaki Kawakami 	NPO Japan Spinal Deformity Institute (JSDI) (a, e) Medtronic (b) DepyuSynthes (b) Kisco (b) EOS imaging (a)
 Hiroko Matsumoto 	SRS (a) POSNA (a) Japan Spinal Deformity Institute (JSDI) (a, b) CSSG (b)
 Toshiki Saito 	No relationship

- Ryoji Tauchi \bullet
- Tetsuya Ohara
- Gregory Redding •

- No relationship
 - No relationship
- No relationship

No relevant financial relationships for this presentation

- **Grants/Research Support** a.
- Consultant b.
- Stock/Shareholder C.
- Speakers' Bureau d.
- **Other Financial Support** e.

6 Minute-Walk Test (6MW)

- To assess function in several cardiopulmonary and neuromuscular conditions
- Influenced by muscle strength, balance, nutritional status, cardiac and lung function
- Standardized with norms for children
 <u>></u>5
 years of age
- Easy to do in the outpatient setting

6-minute Walk Test in EOS

•Pre-op 6MW test in congenital scoliosis with rib anomalies

- ICEOS 2017, San Diego (Kawakami, Matsumoto, Redding)
 - Reduced in all patients compared to norm (10-30%)
 - Absolute 6MW values correlated with age, FVC and major curve

•6MW test has not been widely used for EOS.

•No report of changes during surgical treatment in EOS

 To investigate changes in 6-minute walk test before and after serial surgical treatment for congenital scoliosis

• Hypothesis: Growth friendly surgery improves functional outcome measured by 6-minute walk

 To examine correlations between 6-minutes walk test and BMI and lung function forced vital capacity (FVC)

• Hypothesis: Longer walking distance in 6MW test is associated with higher BMI and FVC

 To compare the results to changes reported in normal children

• Hypothesis: EOS patients have less changes in function compared to norm

Study MethodsDesign and Setting:

- A retrospective cohort study
- Consecutive patients 2004-2012 from a single center

Study Participants:

- Congenital scoliosis with rib anomalies (fused/defect, or severe deformed)
- Rib-based growth-friendly surgery
- Follow-up period: five years

Endpoints:

Methods

• 6 minutes walk test at 1-year, 2-year and 5-year

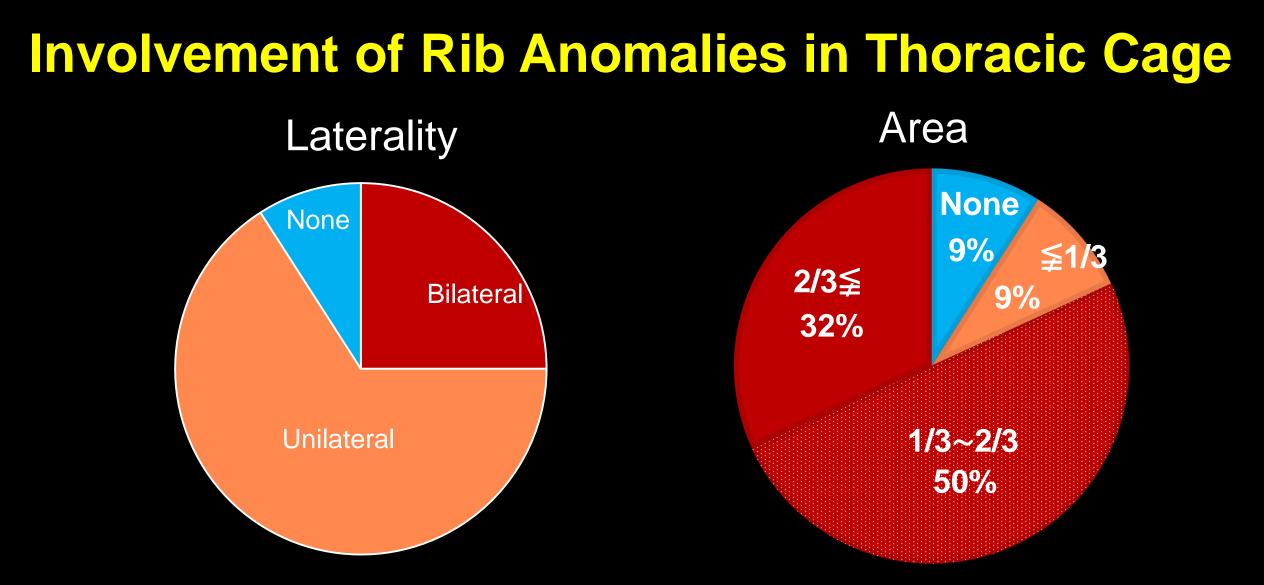
- Absolute distance (m)
- Standardized (height, age)

- BMI %tile at 1-year, 2-year and 5-year
 - Calculated by arm span
 - %tile by Japanese age specific norms

FVC %tile at 1-year, 2-year and 5-year

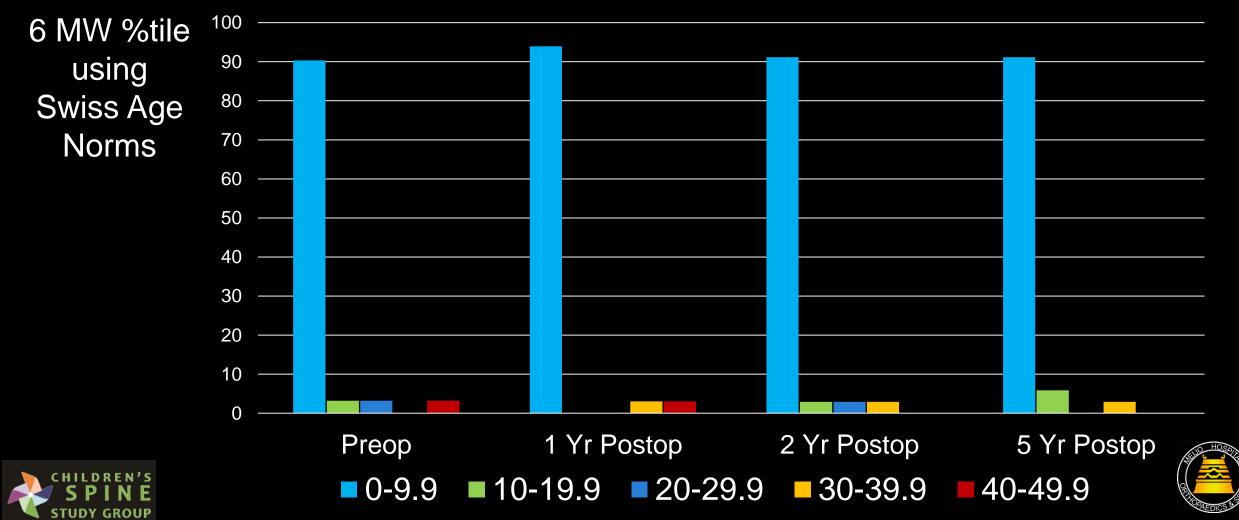
Calculated by arm span

Study Participants


- 44 patients (Male 14, Female 30)
- Age at primary surg.: **5.8±1.8 ys.**

Pre-op BMI: 53±30 %tile

- Number of procedures: 9.8±1.4 within 5 years
- 14 of 44 (32%) underwent spine fusion, implant removal, or termination of expansion by the end of the study



2/3 of patients : unilateral involvement

80% of patients : >1/3 of the unilateral thoracic cage

Changes of Walking Distance: Standardized 6MW was compromised at preop but did not worsen postoperatively

Results:

	Preop.	Immediate Postop.	1-year Postop.	2-year Postop.	5-year Postop.
Major curve (°)	72 ± 28	53 ± 23	56 ± 22	56 ± 22	52 ± 23
BMI (%tile)	53 ± 30		51 ± 29	43 ± 31	34 ± 27
FVC % Predicted (%)	58 ± 17		57 ± 15	57 ± 15	54 ± 16
6-minute Walk (m)	344 ± 86		374 ± 74	390 ± 78	434 ± 80

Results:

Over the 5-year period of study, 6-minute walk increased by 86±97m (17.2m/year)

Normal children increase distance of 16-25m per year

 The change in FVC did not correlate with the change in 6-minute walk as a % of incremental change over 5 years (p=0.30)

•No correlation between BMI and 6-minutes walk

Conclusions

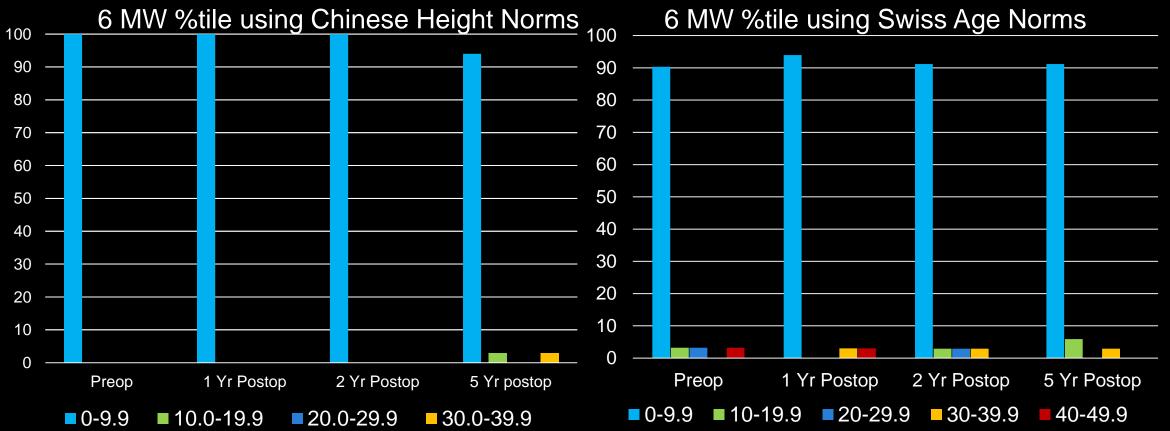
•Over 5 ys. of surgical Tx. for congenital scoliosis:

- ✓Major coronal curve was reduced
- ✓BMI decreased
- Lung function did not change as FVC % of predicted
- ✓6-minute walk distance increased in absolute terms at a rate seen in normal children over time

 Improvement in 6 minute walk occurs despite persistently reduced lung function, suggesting improvements in balance, strength, and stride length may be more important determinants of performance by rib-based growth-friendly surgery.

References

- 1. Solway S, Brooks D, Lacasse Y, Thomas S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest. 2001;119:256-270.
- 2. American Thoracic Society Statement. Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med. 2002;166:111-117.
- 3. Li AM, Yin J, Yu CC, et al. The six-minute walk test in healthy children: reliability and validity. Eur Respir J. 2005;25:1057-1060.
- 4. Geiger R, Strasak A, Treml B, et al. Six-minute walk test in children and adolescents. J Pediatr. 2007;150:395-399.
- 5. Maher CA, Williams MT, Olds TS. The six-minute walk test for children with cerebral palsy. Int J Rehabil Res. 2008;31:185-188.
- 6. Goldman MD, Marrie RA, Cohen JA. Evaluation of the six- minute walk in multiple sclerosis subjects and healthy con- trols. Mult Scler 2008;14:383–390.
- 7. Priesnitz CV, Horak Rodrigues G, Da Silva Stumpf C, et al. Reference values for the 6-min walk test in healthy children aged 6-12 years. Pediatr Pulmonol. 2009;44:1174-1179.
- 8. Montes J, McDermott MP, Martens WB, et al. Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy. Neurology 2010;74:833–838.
- 9. Hassan J, van der Ne, J, Helders P J, , et al. Six-minute **walk test** in children with chronic conditions. British Journal of Sports Medicine. 2010; 44(4):270-274.
- 10. Chen H, Liang BM, TangYJ, et a;. Relationship between 6-minute **walk test** and pulmonary function **test** in stable chronic obstructive pulmonary disease with different severities. Chinese Medical Journal (English Edition). 2012; 125(17):3053-3058.
- 11. Ulrich S, Hildenbrand FF, Treder U, et al. Reference values for the 6-minute walk test in healthy children and adolescents in Switzerland. BMC Pul Med. 2013;13:49.
- 12. Mcdonald, CM. Henricson, EK. Abresch, TR., et al. THE 6-minute **walk test** and other endpoints in Duchenne muscular dystrophy: Longitudinal natural history observations over 48 weeks from a multicenter study. <u>Muscle 8 Norve</u> 2012; 48(2):343-356.



Thank you for your attention.

Standardized 6MW was compromised at preop but did not worsen postoperatively

