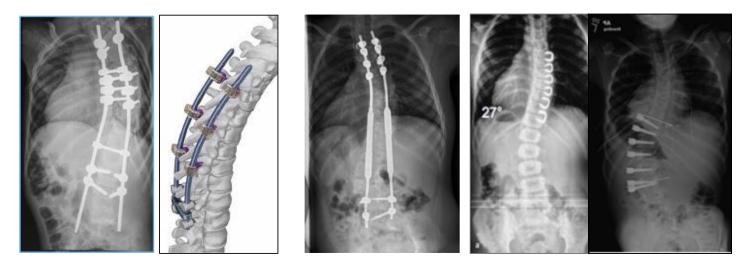
The Bandwagon I jumped on an then off...

ICEOS Lisbon 2018

Carol Hasler Basel / Switzerland



Disclosure information


I disclose the following financial relationships with commercial entities that produce health-care related products or services

Consultant for DePuySynthes, Switzerland

Considerable variability in expert's opinions & decision making Vitale 2010 CORR

EOS strategy 2018

Casting/bracing if no TIS (thoracic insufficiency syndrome) «buy time»

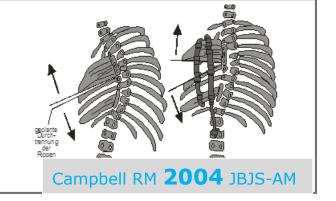
Growth modulating surgery >60° Cobb <10 years

- > VEPTR if TIS
- > Bilateral MAGEC growing rod construct if possible&affordable
- > Conventional growing rods
- > Growth guiding systems e.g. Shilla, modern trolleys
- Convex staples
- > Convex tethers promising alternative to preserve function

VEPTR & Thoracoplasty

Vertical Expandable Prosthetic Titanium Rib Chest cage enlargement&stabilization

Thoracic Volume-Depletion Deformities


I absent ribs


fused ribs

Π

IIIa foreshortened thorax *e.g. Jarcho-Levine* IVb transverse contriction *e.g. Jeune Syndrome*

sitäts-Kinderspit

Basel

No fixation on the spine, minimized neuro risk

Polyaxial anchors, spine flexibility, no spontaneous fusion

Lung growth, function

True correction (growth modulation)

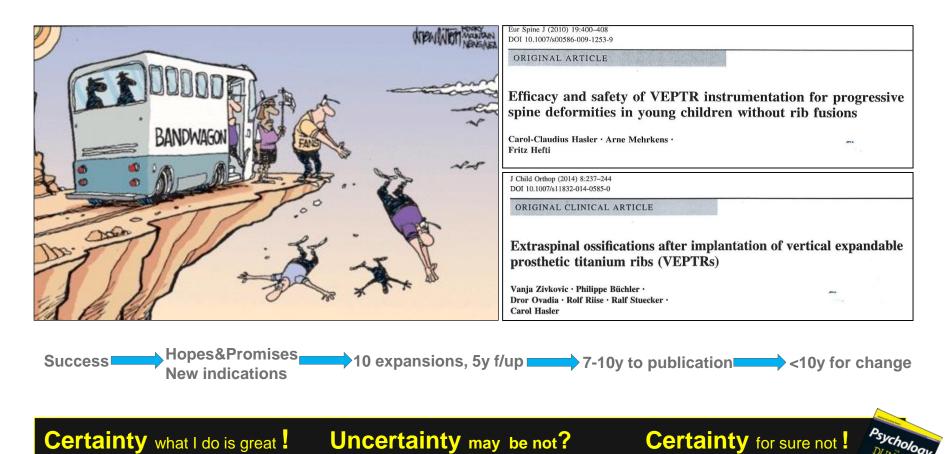
Anchor points intact for definitive fusion

Understand why you feel and act the way you do.... Why do we jump on bandwagons ?

Human beings are gregarious by nature

We are **dogma-prone** from our mother's womb.

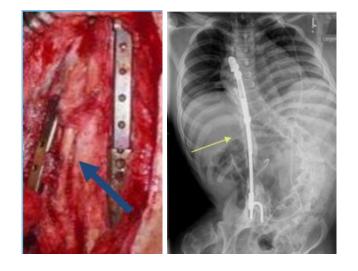
Human psychological predilection for certainties


1673 French polemist Simon Foucher Dissertation on the Search for Truth

Experience is what you get, when you get what you don't want...

Quality indicators – What made me jump off?

Registries / Databases


- Surgeon based
- Department based
- Hospital based
- National
- International networks
- Societies e.g. SRS Morbidity&Mortality database

N	Total 19,360	Idiopathic 11,227	Congenital 2012	Neuromuscular 4657	Other* 1464
Total complications†	10.2% (1971)	6.3% (710)	10.6% (213)	17.9% (835)	14.5% (213)
New neurological deficit†	1.0% (199)	0.8% (86)	2.0% (41)	1.1% (49)	1.6% (23)
Death†	0.1% (26)	0.02% (2)	0.3% (6)	0.3% (16)	0.1% (2)
Superficial wound infection†	1.0% (184)	0.5% (61)	1.3% (27)	1.7% (79)	1.2% (17)
Deep wound infection†	1.7% (321)	0.8% (95)	0.9% (18)	3.8% (177)	2.1% (31)
Pulmonary (not embolism)†	1.0% (202)	0.6% (63)	1.1% (23)	1.9% (90)	1.8% (26)
Non-fatal hematologic†	0.5% (93)	0.2% (25)	0.1% (3)	1.2% (57)	0.5% (8)
Durotomy†	0.4% (76)	0.2% (22)	0.4% (8)	0.9% (42)	0.3% (4)
Implant related†	1.5% (296)	1.1% (120)	1.5% (31)	2.1% (100)	3.1% (45)
Deep venous thrombosis‡	0.01% (2)	<0.01% (1)	0.05% (1)	0% (0)	0% (0)
Pulmonary embolus‡	0.04% (7)	0.04% (5)	0% (0)	0.04% (2)	0% (0)
Epidural hematoma‡	0.02% (3)	<0.01% (1)	0% (0)	0.02% (1)	0.1% (1)
Vision deficit‡	<0.01% (1)	0% (0)	0% (0)	0.02% (1)	0% (0)
Peripheral nerve/plexus deficit§	0.5% (89)	0.5% (53)	0.8% (17)	0.3% (15)	0.3% (4)
SIADH‡	0.3% (48)	0.2% (23)	0.15% (3)	0.3% (14)	0.5% (8)
Other complications†	2.2% (424)	1.4% (153)	1.7% (35)	4.1% (192)	3.0% (44)

Correction rate Sag&cor balance

Complications Neuro deficit Infection rate Revision rate

VEPTR in non-TIS patients

Hasler C et al 2010 Eur Spine J

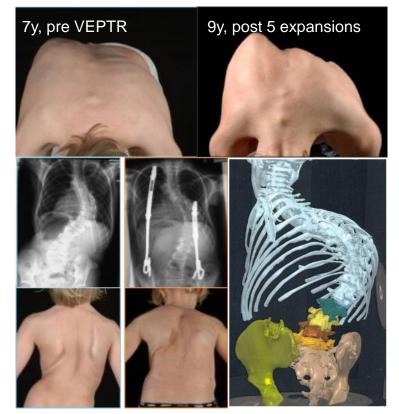
less coronal correction and 3D control than GR in non-congenital deformities

Zivkovic V et al 2014 J Child Orthop

27/66 41% ossifications, iatrogenic rib fusions mostly around VEPTR implant

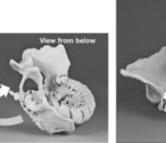
Dede O et al 2014 JBJS-Am

Neg effect on chest cage compliance and pulmonary fct ? N=21 TIS/VEPTR patients 6y f/up Decrease of predicted FCV and increase of chest wall stiffness



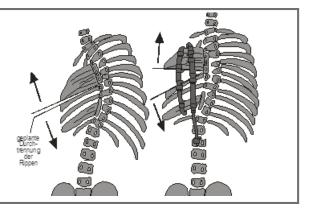
Uncontrolled rotation, crankshafting

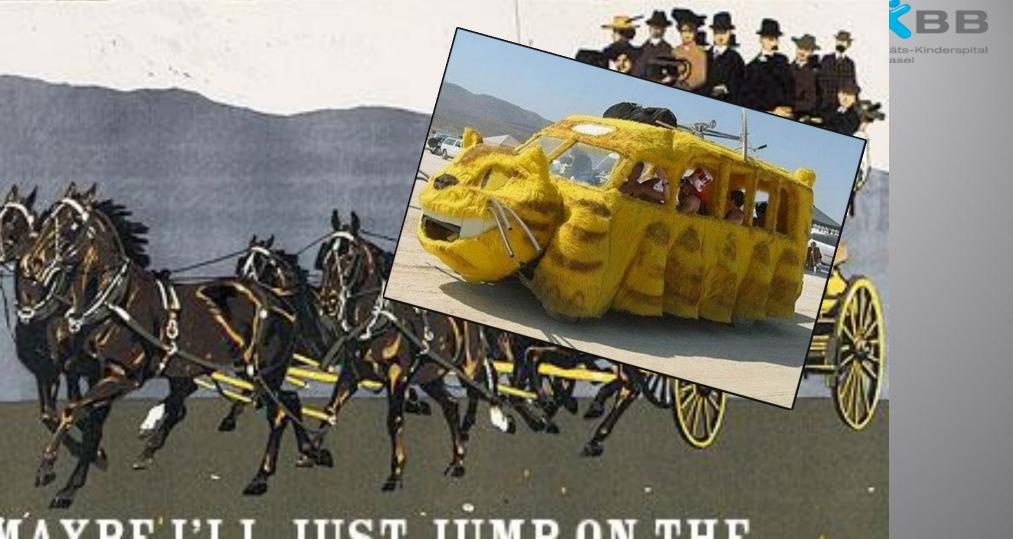

Sotos Syndrom


cerebral giantism – f, 6 years VEPTR

13y @ final instrumentation

Arthrogryposis

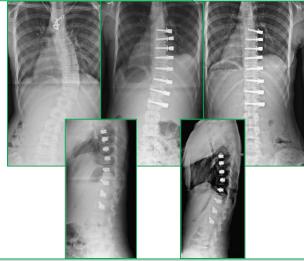

Indications for VEPTR


Thoracic Volume-Depletion Deformities

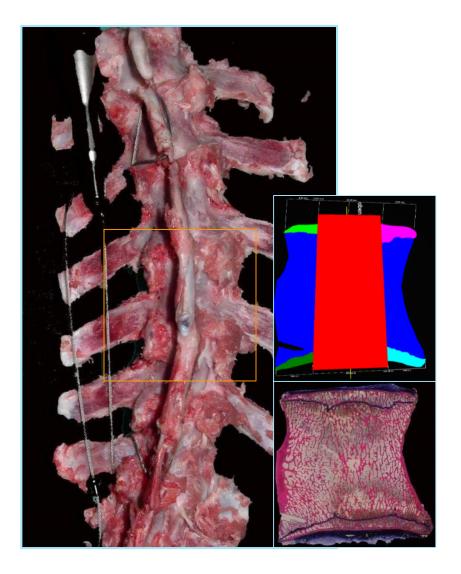
- I absent ribs
- II fused ribs

IIIa foreshortened thorax *e.g. Jarcho-Levine*

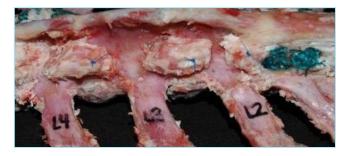
IVb transverse contriction *e.g. Jeune Syndrome*



MAYBE'I'LL JUST JUMP ON THE NEXT BANDWAGON. I'M SURE ANOTHER ONE WILL BE PASSING SOON.

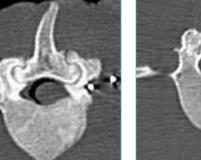

Anterior Convex FlexibleTethers

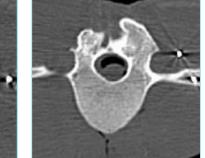
From Samdani AF ESJ 2015



Newton PO 2018 JBJS-AM; 2011&2008 Spine Crawford CH 2010 JBJS-Am Samdani 2015 Eur Spine J

Progressive 3D correction Discs, facets, muscles not touched Motion preservation No repetitve surgery





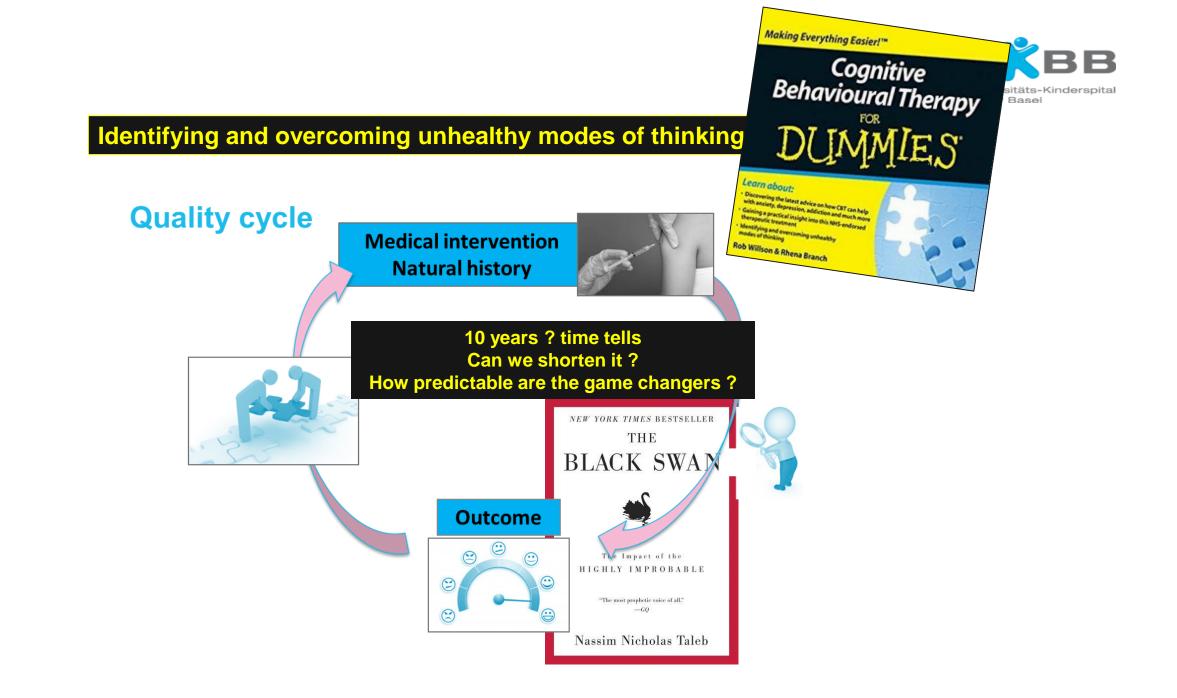
Experimental lumbar scoliosis in growing sheep induced by a flexible concave tether: Spontaneous bilateral facet fusions

C. Hasler - Unpublished results

Concave lumbar vs convex thoracic tethering

Sheep

constraint lumbar facet joints, high pressure when tethering


Human scoliosis

subluxed, convex th facet joints; reduction w/ tethering

thorax less mobile than lumbar spine

more axial load in humans

Simple models & orthopaedic thoughts for complex biologic systems

More bandwagons *«band-ufos»* to come Artificial intelligence and neuronal networks

