THE SHILLA PROCEDURE A Spinal Growth Guidance System

Richard E. McCarthy, M.D. Arkansas Specialty Spine Center

Spinal Deformities in Children

- Types of Solutions • Problems
 - Correction/Fusion - - - - - Loss of growth
 - Convex tethering/partial fusion - Partial correction/
 - partial growth loss
 - "Growing rods" - - - - - - Repeat trips to OR/ growth accommodating
- goal is fusion

Shilla Procedure

- Growth is encouraged and guided
- Corrects the 3 D spinal deformities
 - Fuses <u>apex</u> only
- Ultimate goal is spinal motion
 - Rod removal at maturity
 - Facet preservation

Scoliosis

• Infantile and Juvenile

- Multiple types

*<u>Not</u> inclusive of chest wall deformities

Shilla Procedure:

- Correction focused at apex
 - Fixed head pedicle screws

- Apex fused over 2-4 levels
- Growth guidance screws at ends of curve
 - Screws slide along rods with growth

Method

- Growth guidance screws
 - Fix to bone; not to rod
 - Capture the rod but allow it to slide
 - Multiple planes of screw motion decrease stress on bone fixation

Polyaxial Screw

Snap Off Fixation Plug

Surgical Strategy

- Flexibility films determine if anterior apical release necessary – staged
- 2) Goal: <u>Correct apex to normal</u> <u>alignment in all planes</u>
- 3) Preoperative planning for screw placement blueprint
- 4) Leave rods long for growth

Surgical Techniques

- Subperiosteal exposure of apex <u>only</u>
- Subfascial exposure for growing screws
- Thoracoplasty graft harvest and deformity correction

Surgical Techniques

- Growing screws placed with C-arm radiographs
- Rod and apical screw derotation

Background Research

- Laboratory cycling 1 million cycles
 - No implant failures
 - Metal filings

Background Research

- Animal Research goats
 - All grew
 - No apical stenosis
 - Joints maintained

10 weeks

22 weeks

Index Patient

- Infantile Idiopathic Scoliosis
- 2+10 years

Preop

Preop Flexibility

6 wks postop

2 yrs postop

Results - early

- Twenty patients
 - 15 pts-Little Rock Richard E. McCarthy
 - 5 pts- St. Louis Lawrence Lenke, Scott Luhmann
- Age 6+1 yrs (range 2+10 to 11 yrs)
- Multiple diagnoses (neuromuscular, congenital, idiopathic)
- Two yr follow-up: 3 pts.
- None have reached maturity

Problems

- Two infections I and D
- Revisions
 - Implant prominence (5)
 - (2 temporary rod removal)
 - Rod breakage (1)
 - Screw pullout (1)
 - Growth off ends of rods (1)
 - Inability to control:
 - Pelvic obliquity SMA pt. (1)
 - Double major curve idiopathic pt. (1)

Conclusion

We are reporting early results on a challenging group of patients who have undergone a new surgical approach that allows them to be <u>brace free</u>, able to <u>grow</u>, <u>without repeated spinal lengthenings</u>.