Pulmonary Evaluation of Infants and Children with Congenital Chest Wall and Spine Deformities

> Greg Redding, MD Professor of Pediatrics University of Washington, Seattle

The Pulmonary Evaluation Assesses:

- 1. Severity at the time of initial encounter
- 2. Progression of disease
- 3. Effect of intervention (VEPTR implantation and expansion)

Serial Pulmonary Assessments May Help Determine:

- 1. When to intervene
- 2. Short and long-term benefits of interventions

Thoracic Structure and Function

Scoliosis

Kyphosis

Rotation

Distortion

Work of Breathing

Chest Wall Movement

Asymmetric Ventilation

Respiratory Muscle Function

Conceptual Pulmonary Outcomes of Kyphoscoliosis

- Restrictive Respiratory Mechanics
- Asymmetric Loss of Lung Function
- Loss of Chest Wall Excursion
- Inefficient Diaphragm Function

Pulmonary Evaluation Techniques in Children

Test	Index	Age of Useful Measurement
<u>Respiratory rate</u>	Sleep rate	All ages (age-specific norms)
Oxygenation	SaO2 in room air	All ages
<u>Ventilation</u>	CO2 (capillary) or HCO3	All ages
<u>Spirometry</u>	Forced vital capacity (FVC)	5-6 years (using arm span)
Respiratory muscle strength	Maximal inspiratory and expiratory pressure	6-8 years
Exercise tolerance	Maximal oxygen consumption, external work, ventilation	8 years
	6 minute walk?	5 years
<u>Echocardiogram</u>	Estimated pulmonary artery pressure Right ventricular wall thickness	All ages (may need sedation)
Ventilation scan	Right vs. left ventilation Homogeneity of ventilation	5-6 years
Perfusion scan	Right vs. left lung blood flow	Any age (may need sedation)

Total Lung Volume by CT Scan 2 Years After Expansion Thoracoplasty

Preoperative

cm³

Postoperative

Emans JB, et al. Spine 2005; 30:S58-S68

Lung Perfusion Scan in Kyphoscoliosis

Dynamic MRI: Change in Chest Wall and Diaphragm Configuration

Cluzel, P. et al. *Radiology* 2000;215:574-583

Frequency of Respiratory Abnormalities Associated with Congenital and Infantile Scoliosis

100% Abnormal Lung/Chest Wall Compliance **Reduced Vital Capacity** Reduced Chest Wall Circumferential Excursion Failure to Thrive (BMI <5%) 50% Asymmetric (Right vs Left) Lung Function Respiratory Failure/Need for Mechanical Ventilation Pulmonary hypertension 0% Death

TIS Severity Score: Evolving Functional Considerations*

Severe:	Ventilator Dependent	
	CO ₂ Retention	
	Cor Pulmonale	
	Vital Capacity <50%	
	Failura ta Thriva	
Moderate:		
	Asymmetric Lung Function	
	Vital Capacity 50-70%	
	Tachypnea at Rest	
	Vital Canacity >70%	
IVIIICI.		
	Exercise Limitation	

*Excluding Neuromuscular Weakness Conditions

Neuromuscular Weakness and Secondary Thoracic Insufficiency Syndrome

↓**FVC**, ↓**F**RC

Hypoxemia and CO₂ retention during sleep

Decreased muscle strength and cough

Age Distribution for TIS Subjects at ET by Diagnosis

Pulmonary Function Testing in Infants and Children

	Invasive	Non-Invasive
Effort Dependent*	Trans-Diaphragm Pressures	Spirometry Respiratory Muscle Strength and Endurance
Effort ndependent	Chest Wall & Lung Compliance Lung volumes	Oximetry, Blood Gas Tensions, Perfusion Scan, Sleep Study, Echocardiogram

*Voluntary Effort at 5-6 Years of Age

Pulmonary Outcomes of Surgical Interventions for TIS

PRESENTING STATUS

Progression

Halt in Progression but no further growth

Improvement Proportional to Growth

Catch-up Improvement Over Time

Serial Lung Functions Following Initial Expansion Thoracoplasty

Summary

- Specific and standardized criteria to intervene surgically in children with Thoracic Insufficiency Syndrome do not exist.
- Functional criteria tend to identify and/or confirm the loss of pulmonary reserve suggested by structural abnormalities of the spine and thoracic cage.
- Serial correlations of structure and functional indices among one another will help to determine when surgical intervention is ideally timed.