Long-term results in surgical management of congenital scoliosis (CS): A minimum 10 years follow-up study

Debnath UK Harshavardhana NS Hegarty J Grevitt MP Mehdian SMH Thambiraj S Webb JK

2nd International meeting on early onset scoliosis (ICEOS), Montreal; Nov 2008

Centre for Spinal Studies and Surgery Nottingham

Long-term results in surgical management of congenital scoliosis (CS): A minimum 10 years follow-up study

Presenter: N Harshavardhana No Relationships

Co-Authors:

UK Debnath J Hegarty MP Grevitt Mehdian SMH Thambiraj S JK Webb No Relationships No Relationships No Relationships No Relationships No Relationships No Relationships

2nd International meeting on early onset scoliosis (ICEOS) Montreal, CA; Nov 2008 Authors Disclosure Information

- a. Grants/Research Support
- **b.** Consultant
- c. Stock/Shareholder
- d. Speakers' Bureau
- e. Other Financial Support

Centre for Spinal Studies and Surgery Nottingham

Background

Surgical Rx of CS: Challenging / Trial & error

Current evidence: Levels IV / V

Few studies: Level III evidence

Our study cohort

- 52 children operated for CS & f/u ≥10 yrs
- **18 & 34**
- 35 Left & 17 Right sided curves
- Mean follow-up of 19.5 yrs (range: 10-52 yrs)
- Single centre: 3 surgeons (JKW / SMH / MPG)

Etiology

- Hemivertebrae 22
- Unsegmented bar 15
- Unsegmented bar with contra-lateral HV: 4
- Wedged vertebrae 5
- Hemi-metameric shift 2
- Unclassifiable 4

Curve locations

- Cervical / CT 5
- Thoracic 33
- Th-lumbar 9
- Lumbar / LS 5

Associated anomalies

Intraspinal anomalies – 10 Most common anomaly – Diastematomyelia (6)

Syndromes – 11 Most common syndrome – VATER Syndrome (5)

Patient demographics

Group I

Posterior in-situ fusion: 16 patients

Centre for Spinal Studies and Surgery Nottingham

Patient demographics

Group II

Anterior + Posterior correction & fusion: 32 pts

Patient demographics

Group III

Anterior HV excision + correction & fusion: 4 patients

Neurosurgery in cases of intra-spinal anomalies prior to Scoliosis correction

Centre for Spinal Studies and Surgery Nottingha

Patient demographics: Summary

Parameters		Group I	Group II	Group III
Number of patients		16	32	4
Sex	Male	4	12	2
	Female	12	20	2
Age @1 st Sx		4.8y (1.1-11 y)	8.7y (6.5-14y)	2.3y (1.5-4.1 y)
Cobb angle @ 1 st Sx		63.2 ⁰	67.5 ⁰	38.5 ⁰
Post-op Cobb angle		39.5 ⁰	37.5 ⁰	14.5 ⁰
Cobb @ final f/u		45 ⁰	42 ⁰	21 ⁰
Revision Sx		9 / 16	15 / 32	1/4
Average no. of Sx		1.68(1-3)	1.72(1-4)	1.25 (1-4)

Cord monitoring

Group I: 12 yr old Male with 10.5 yrs f/u

Diagnosed antenatally Posterior uninstrumented fusion Now 10.5 yrs post-op

L3 HV 1.5 yrs **Iatest x-rays May 2008**

Group I: 40yr old Female with 33 yrs f/u

Diagnosed @ 2 yrs Posterior uninstrumented fusion Definitive fusion @13yrs

Back pain 24 yrs later

Immediate post-op

T6-7 HV @ 6.7 yrs Deep infection & implant removal (loss of correct 24°) L5-S1 Ant fusion

3 yrs post-op

Group II: 24 yrs Male with 17 yrs f/u

Cervico-thoracic / thoracic multiple HV Sx for Coarctation of Aorta 65^o pre-op Cobb – Ant / Post LT instrumentation Definitive Fusion Most recent x-rays showing implant failure asymptomatic Klippel-Feil syndrome @ 1 yr @ 7 yrs @ 12 yrs Patient is

Group III: 22 yrs old Female with 20 yrs f/u

Diagnosed antenatally

Anterior HV excision & fusion

No surgery done after this

T9 HV

at 14 mo

Latest f/u Apr 2008

Revision surgery: Indications

- Progression of deformity
- Sagittal imbalance
- Crankshaft phenomenon
- Implant failure / pseudoarthrosis
- Junctional kyphosis

Frontal decompensation in 33 yr F with 26 yrs f/u

Diagnosed Circumferential convex fusion (A+P) Definitive fusion @ 22 yrs

Post-op Infection

Most recent xrays – Mar 2008

@ 1.8 yrs with multiple thoracic HV
@ 7 yrs
Ant apical vertebrectomy & post fusion
implant removal – loss of correction

Implant failure & pseudoarthrosis

Listed for revision surgery

Patient is asymptomatic

Junctional Kyphosis

Patient 1

Patient 2

Conclusion

- Growth arrest / fusion performed at early age may deteriorate over time
- Early definitive excision & fusion of junctional HV is recommended (cervicothoracic / thoraco-lumbar & lumbo-sacral)
- Timing of definitive Sx influenced by
 Type / site & no. of HV
 - Presence of unsegmented bar

Conclusion

- Follow-up beyond adulthood is required
- Group I maximum proportion of patients who underwent definitive revision Sx [56.25% vs. 47% (Gr II) & 25% (Gr III)]
- Multiple surgeries may be needed
- Combined neuro & orthopaedic spinal input to optimise outcome @ long-term