Patterns of Progression in the Porcine Scoliosis Model

Frank Schwab MD, Ashish Patel MD, Virginie Lafage PhD, Jean-Pierre Farcy MD

Disclosure Information

Schwab F	<u>Medtronic</u> (Consultant, Grants/Research Support) <u>Depuy</u> , (Consultant, Grants/Research Support) <u>Nemaris</u> (Stock Holder)
Patel A	NA
Lafage V	Nemaris (Stock Holder)
Farcy JP	NA

Significance

AIS = Limited Treatment Options

Bracing

- 1. Limited corrective ability
- 2. Compliance issue
- 3. Psychological impact on young children

Surgical

- 1. Loss of mobility
- 2. Fusion of growing segments
- 3. Long term sequelae of segmental instrumentation?

Non Fusion Technology

Optimal Development of Non-Fusion Requires a Large Animal Model

Braun & al, Spine 2005

Non Fusion Technology

Optimal Development of Non-Fusion Requires a Large Animal Model

Yorkshire Pig

- 1. Significant Growth Potential
- 2. Round Thoracic Cage Similar to Humans
- 3. Similar Vertebral Morphology (Mclain et al 02)
- 4. Available All Year
 - No Cyclical Breeding (ex. Goats)

Methods: Surgical Technique

11 Yorkshire Pigs (11 wks old, 20Kg)

Creation of a mild intraoperative curve $\sim 25^{\circ}$

Analysis Protocol

Bi-Weekly Xrays

Severe Deformity >50 degs

Euthanized

Post Mortem CT

Coronal/Sagittal Cobb

Axial Rotation RAsag Method

Purpose of Current Investigation

Describe the Progressive Deformity in 3 Planes

Establish the key parameters leading to Progressive deformity

General Results

Immediate Post-op

8.3 vertebrae within curve [7-10]

Cobb 24.6° [8-35] **Lordosis 3.6**° [0-9]

Progression

to > 50°

- Mean: 10.6 weeks
- Range: 6-14 weeks

Mean Progression (deg)
Coronal 3/w [2.2-5.7]
Lordosis 2/w [0.8-3.3]

Coronal Curve Progression

Coronal Plane

Initial 27 degs

Final 59 degs

Cobb Index: (Induced Cobb/# Vertebrae)

Time for progression to $>50^{\circ}$

Max Lordosis Progression

Sagittal Plane

Initial Kyphosis

Final Lordosis

Lordosis Index:

(Induced Lordosis/# Vertebrae)

r = -0.01

Final Lordosis

Axial Rotation Progression

Initial No Rotation

Final Into Concavity

Transverse Plane

Mean Axial Rotation Apical Unit: 22° (SD 7°)

Mean Cobb angle 52° (SD 10°)

Highly Significant Correlation r=0.86; p<0.001

Discussion

Porcine Scoliosis Model

- Highly reproducible mechanically induced deformity
- 3D Progressive Radiographic Deformity
- Provides evidence for Mechanical Vicious Cycle of Progression Ian Stokes, Phd

• Patterns of Progression

- Similar to AIS... Ideal Model
- Large Cobb index \rightarrow Higher risk of Progression
- Variable Sagittal Plane
- Axial Rotation Correlates w/ Curve Magnitude