Growth of the Spinal Cord and when the Intraspinal Pathology should be addressed

Nejat Akalan, MD, PhD
Department of Neurosurgery
Hacettepe University, Ankara

Spinal cord growth

Embryonic period

Post-natal period

Both the spine and the spinal cord lengthen by an order of magnitude during growth

- Congenital spinal anomalies and "tethered cord", definitions
- Surgical intervention, why and when?
- Intraspinal anomalies associated with scoliosis
- Algorithms for treatment

Congenital Spinal Anomalies

Occult Spina Bifida (Closed dysraphism)

Spinal Lipoma Diastematomyelia Dermal sinus Short-fatty filum

Tethered Cord Syndrome

<u>symptoms</u>	<u>signs</u>	radiological features
back pain bladder dysfunction	leg weakness atrophy loss of dtr's sensory loss	lipomyelomeningocele lipoma of the terminal filum thickened terminal filum
	progressive scoliosis equinovarus equinovalgus	low-lying conus

Surgery

Prophylactic

Prevent deterioration

Reversal of the symptoms

Decision for intervention

Unclear Definition of the Syndrome

Unknown Natural History

Uncertain Pathogenesis

Lack of Accurate Clinical or Diagnostic Tests

Surgery

Decompression and Untethering

terminal filum, nerve root, dentate ligaments, dura

Spinal Malformations and Scoliosis

"20–58% of cases of congenital scoliosis associated with intraspinal abnormalities"

Related to spinal malformation

Co-existing pathology

Spinal Malformations and Scoliosis

Occult spinal dysraphism

Diastematomyelia (Split-cord malformations)

Vertebral anomalies

Failure of formation
Failure of segmentation

Syringomyelia

İdiopathic Chiari malf.

Appert spinal dysraphism

Myelomeningocele

Decision making

Stable vs. progresive

Casual relationship

Primary aim

Sequence and timing

Diastematomyelia (Split-cord malformations)

SCM I and II

An adhesion between the ectoderm and endoderm leads to an endomesenchymal tract that bisects the spinal cord.

frequent association with secondary spinal anomalies

Diastematomyelia (Split-cord malformations)

Scenario 1

Incidental

Normal N&P Exam.

Isolated SCM I or II

Tethering?

Axial growth ← Age

Scenario 2

Isolated +NMS Syndrome Progression ?

Scenario 3

Scoliosis

Stable

Prophylactic?

Progressive

lejat Akalan MD, PhD

Syringomyelia

Longitudinal cavitations within spinal cord

Posterior fossa pathology
Chiari malformations
Craniovertebral junction
anomaly
Assoc. with spinal dysraphism
Idiopathic
Inflammatory
Traumatic

Syringomyelia

Aims to reverse the pathophysiological mechanism

Treatment

+ Hydrocephalus

Follow-up (MR)

5/5/2021

Treatment

Hydrocephalus

Chiari I-II

Shunt

Decompression

5/5/2021

Treatment

Craniovertebral junction anomalies

Decompression + Fusion

5/5/2021

idiopatic (?)

Syringo-subarachnoid,
Syringo-peritoneal shunt

Syringomyelia and scoliosis

- Defining the casual relationship is the key for appropriate sequence of the surgical approach in complex spinal malformations
- There is not enough scientific evidence to validate the contemporary practice in treating joint neurosurgical and orthopedic malformations