Definitive Fusion in 12 Early-onset scoliosis with Growing Rod

National Hospital Organization Kobe Medical Center

> Teppei Suzuki, Koki Uno, Hiroshi Miyamoto, Yoshihiro Inui,

Introduction

(Apical fusion, wedge resection, etc)

Fusionless treatment

VEPTR (Vertical expandable titanium rib) **Shilla**

Growing Rod

Purpose

Retrospetive case review of 12 children graduated dual growing rod at a single institution.

Objects

Idiopathic	
-------------------	--

- Congenital 3
- Neuromuscular 3
 - Syndromic 3

No. of patients	12
Gender (F:M)	8:4
Age at initial surgery	10.2±4.2 _{y.0} .

Duration between lengthenings

4.0±2.6yrs

Operative Tequnique

Measurement

Preinitial Postinitial Prefinal Postfinal Final f/u

Major Curve Kyphosis (T1-5 T5-12)

T1-S1 Length Lung Space **Concave & Convex**

Complications

DCM / Id:ID

Img

SI7ES ARE

Main Curve

Thoracic Kyphosis

Length of Elongation

The Detail of the Complications

19 complications

4

2

2

4

 \mathbf{O}

Hook Dislodgement Rod Breakage Screw Loosening / Pull-out Superficial Infection Deep infection Neurological Deficit

The Detail of the Complications

With a minimum of one complication

Complication rate per lengthening in each patient

 $23.0 \pm 20\%$

Autofusion

Autofusion	Yes	No	P Value
No. of patients	7	5	
Age at initial op (y.o.)	9.6±4.2	11±0.7	N.S.
Interval (mo)	8.4±2.5	8.8±1.7	N.S.
Complication rate(%)	23±20	22±22	N.S.
Duration of the treatment (y)	5.3±2.5	2.3±0.6	0.02
No. of lengthening per patient	7.9±3.5	3.4±1.7	0.02
T1-S1 elongetion per year (mm)	8.0±1.8	13±4.8	0.03

Review (1)

Our	study	No of cases	Complication rate with min. 1	Complication rate Per Op
	Whole series	39	77%	23%
	Graduates	12	67 %	23 %
Akba	arnia,et al.; Spine 20	008, JBJS 2010		
	Whole series	140	58 %	18%
	Graduates	13	46 %	
Emar	ns,et al.; <i>Spine 2005</i>			
	VEPTR	31	55%	

Review (2)

Conclusion

- The dual growing rod maintains correction obtained at the initial surgery.
- Lengthening allowed the thoracic cage growth.
- **Complication rate per lengthening was 23%.**
- Autofusion rate was 58%.
- T1-S1 elongation was significantly shorter in the autofusion group.

References

- 1. Akbarnia BA, Breakwell LM, Marks DS, et al. Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. Spine 2008 Apr 20;33(9):984-90.
- 2. Bess S, Akbarnia BA, Thompson GH, et al. Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg Am. 2010 Nov;92(15):2533-43.
- 3. Cahill PJ, Marvil S, Cuddihy L, et al. Autofusion in the immature spine treated with growing rods. Spine. 2010 Oct 15;35(22):E1199-203.
- 4. Thompson GH, Akbarnia BA, Campbell RM Jr. Growing rod techniques in early-onset scoliosis. J Pediatr Orthop. 2007 Apr-May;27(3):354-61.
- 5. Yang JS, McElroy MJ, Akbarnia BA, et al. Growing rods for spinal deformity: characterizing consensus and variation in current use. J Pediatr Orthop. 2010 Apr-May;30(3):264-70.
- 6. Yazici M, Emans J. Fusionless instrumentation systems for congenital scoliosis: expandable spinal rods and vertical expandable prosthetic titanium rib in the management of congenital spine deformities in the growing child. Spine 2009 Aug 1;34(17):1800-7.