ICEOS 2010 Toronto

Coronal Plane Displacement Gradient Precedes Vertebral Growth Modification Using Hemiepiphyseal Staples

> Donita Bylski-Austrow, PhD David Glos, BSE Laura Boehm, BS <u>Viral Jain, MD</u> Eric Wall, MD

Acknowledgments

- Grant funding
 - SRS Grant
 - NIH CTSA via UC Clinical and Translational Science Award
 - UC Women In Science & Engineering Program
- Equipment granted
 - SpineForm LLC
 - Custom implants and surgical instruments
 - Ethicon EndoSurgery
 - Materials test system
- Regulatory status
 - FDA IDE approved for prospective clinical safety study

Background

- Approved by US FDA for IDE safety study
- Simple Staple-Screw device made of Titanium
- Applied antero-laterally to the spine

Spinal Hemiepiphysiodesis Decreases the Size of Vertebral Growth Plate Hypertrophic Zone and Cells

By Donita I. Bylski-Austrow, PhD, Eric J. Wall, MD, David L. Glos, BSE, Edgar T. Ballard, MD, Andrea Montgomery, BS, and Alvin H. Crawford, MD

Investigation performed at the Division of Pediatric Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio

Staple device causes actual growth inhibition on ipsilateral side

Hypertrophic Zone Height Gradient 8 weeks

Silue U

EJW1 WALG3F, 5/2/2006

Purpose and Hypothesis

Purpose:

Determine if implantation of staple causes biomechanical gradients in coronal plane

Hypothesis:

Coronal plane displacement and stress gradients occur at the time of initial implantation, preceding growth modification

Methods: Experimental Design

Skeletally Immature Porcine thoracic spines

- Tested biomechanically
 - Before and after implant insertion
 - Paired t-tests

Two tests

- 1) Displacements (n=4)
- Intact spines under "no-load" condition
- Six staple-screw constructs

2) Load (n=5)

Compressive stresses bilaterally in annulus

- During implantation
- During cyclic compression

Methods Displacement

Methods

Stress gradient Compression

- Custom fixtures
 - 5 degrees of freedom
 - Allowed realignment

Methods

Stress gradient

- Cyclic compression
- Stresses measured bilaterally in annulus
 - Custom sensors (J Biomech 2010)

Cut-away to show sensor placement

Thoracic spine curvature

Side to side change in height

Stresses during stapling in vitro

Load – displacement curves

Peak compressive stresses decreased after stapling

Conclusions & Significance

- Staples caused displacement gradient
 - Compressive to tensile
 - Blade angle
 - Likely to maintain growth on contralateral side
- No compressive stress gradient either Static or Peak dynamic
 - Mild stress shielding effect bilaterally

