Postnatal Lung Growth and Lung Function Growth

Gregory J. Redding MD
Seattle Children's Hospital
University of Washington School of Medicine
Seattle, Washington

Disclosures

Chest Wall and Spine Deformity Foundation

Lung Issues in EOS

- EOS leads to restrictive chest wall and lung disease which reduces respiratory reserve as it progresses.
- "Growing" devices are now used to prevent progressive restrictive lung disease but do not recover what pulmonary reserve that is lost.
- Timing of different interventions ideally <u>prevents</u> loss of lung function but provides the maximal correction when devices are finally inserted.

Pulmonary Changes From Neonatal Period to Adulthood

	Adult/Neonatal Ratio
Bronchial Diameter	2.5
Bronchial & Bronchiolar Number	1
Alveolar Number	12.3
Alveolar Size*	5.5
Alveolar-capillary surface area	10-15
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	05.00
Vital capacity	25-32

All increase respiratory reserve needed for exercise, sleep and illness

Lung Function Growth in Normal People

Eras in Postnatal Respiratory Development based on growth velocity

- Neonatal through Infancy
- Adolescence to Young
 Adulthood
- Aging Adults

Neonate -3 Years of Age

Opportunity:	Rapid somatic growth	Rapid increase in alveolar number and complexity	Rapid vertebral growth
Risk:	Acute lower tract infections common	Pulmonary mechanics ineffciency	Greatest risk of morbidity and mortality from respiratory etiologies

Postnatal Lung Development: Alveolar Number

Alveolar number increases with somatic growth

Alveolar growth is more rapid in children <2 years of age and maybe < 4 years

Developmental Thoracic Features Impacting Respiratory Muscle Function

Risk of Death Due to Respiratory Causes

Adolescent to Adult

Opportunity:	Increase in Alveolar size	Increase respiratory muscle strength	Optimal lung mechanics/reserve
Risk:	Less Compensatory Lung Growth?		

Does this influence the optimal time of spine fusion?

Lung and Thoracic Cage Volumes: Changes During Adolescence

Capacity

Total Lung

Serial measure of lung function growth in EOS have not been published.

Postnatal Lung Development: Alveolar Number

Alveolar number increase with somatic growth

Alveolar size increases more than number in older children

Changes in Chest Wall Compliance With Age in Normal Children

Compliance falls by 30% from 5 to 16 years of age

Normal values of maximal inspiratory pressure (Pi_{max}) at residual volume and expiratory pressures (Pe_{max}) at total lung capacity

Age	Pi _{max*}		Pe _{max}	
	Male	Female	Male	Female
8	77 ± 24	71 ± 29	99 ± 23	74 ± 25
10	105 ±27	71 ± 29	123 ± 27	74 ± 25
11-13	114 ± 27	108 ± 29	161 ± 37	126 ± 32
13-17	126 ± 22	109 ± 21	166 ± 44	135 ± 29

^{*}MIP in EOS ranges from 30-60 cmH₂O

Respiratory Effects of EOS: Impact on Lung Function Growth in Adulthood

Chest Wall Constraints: Post-natal Pulmonary Hypoplaisa Syndrome?

Olson JC, Kurek KC, Mehta HP, et al. Evaluation of Pulmonary Cellular Response to Treatment of thoracic Insufficiency Syndrome Using Expansion Thoracoplasty in Scoliotic Rabbit Model

Important Questions Remain

- Can compensatory lung growth happen in humans?
 Probably but not the same growth patterns or growth signals as with normal growth.
- If <u>compensatory</u> lung growth occurs, how much does it restore/improve lung function??
- If the chest wall's mobility and respiratory muscle dysfunction do not improve, does compensatory lung growth matter??

Strategic Treatment Decisions to Maximize Postnatal Lung Growth

- Improving lung volume early should improve lung growth and development more than late interventions.
- Preventing post-natal pulmonary hypoplasia is likely to improve lung function more than hoping for compensatory growth once it has developed.

Strategies to Promote Lung Function Growth in EOS

- Lung function growth is impaired by progressive EOS.
- Early intervention strategies that increase thoracic volume may improve lung growth but not other lung functions.
- Strategies to maximize thoracic size, chest wall movement, <u>and</u> respiratory muscle function as early as feasible will improve respiratory functional reserve into adulthood.