Neurosurgical Management of Intraspinal Lesions: Considerations for the Deformity Surgeon

> ICEOS November 18, 2011 Amer Samdani, MD Director Pediatric Spine Surgery Shriners Hospitals for Children Philadelphia, PA

Objectives

Main intraspinal lesions Chiari malformation Tethered cord Diastematomyelia Patient with myelomeningocele Timing and effect of neurosurgical intervention

Chiari Malformation

Chiari 1

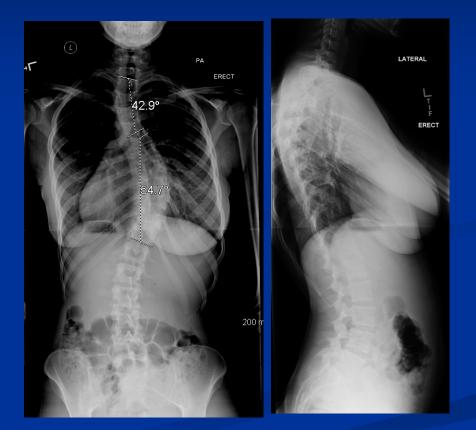
- Herniation of cerebellar tonsils below foramen magnum
- Usually asymptomatic
- Associated syrinx
- Chiari 2
 - Almost exclusively seen in children with MM
 - Herniation of tonsils, vermis, 4th ventricle
- Chiari 3
- Chiari 4

Case Presentation

8 yo girl presented with 30° right thoracic curve MRI scan demonstrated Chiari malformation with holocord syrinx Underwent Chiari decompression What are chances of curve improvement or stabilization?

Result of Chiari Decompression on Spine Deformity

Eula *et al* Spine 2002
Brock Meyer *et al* Spine 2003
Flynn *et al* Spine 2004
Bangor *et al* Childs Nervous System 2006

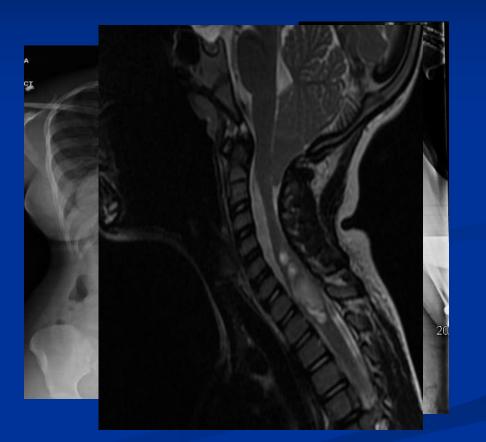

SRS 2009: The Natural History of Scoliosis Secondary to Chiari I Malformation and Syringomyelia after Suboccipital Decompression in Young Patients Li Wei-guo, MD; Prof. Quiz Yong

- Largest series to date of 121 patients with scoliosis and Chiari decompression
- Progressors older than nonprogressors (14.2 vs. 9.2 years)
- Progressors mean Cobb angle of 43° versus 31° for nonprogressors

Chiari with No Syrinx

12 yo girl with AIS

- MRI probably not necessary
- Do *et al* JBJS 2002
 - 2[%] (7/327)
 - None required neurosurgical intervention
 MRI reserved for high risk
- Richards *et al* Spine 2011
 - 529 patients
 - 6.8% with intraspinal anomalies
 - Risk factors: increased rotation and kyphosis



Chiari with Syrinx

- 14 yo girl with a Lenke 2 curve
 MRI revealed a Chiari with large syrinx
- Underwent Chiari decompression
- How long should one wait prior to deformity correction?
 - Repeat MRI 4-6 months to document decrease in syrinx

Witten et al J Neurosurg Pediatr 2008

Postoperative Films

What if the syrinx does not resolve?

Wait longer if deformity permits Atenello *et al* Neurosurgery 2008 ■Median time to resolution of syrinx = 10 months Drainage of syrinx Morbidity Aghakhani et al Neurosurgery 2010 Increased risk of not obtaining reliable neuromonitoring

Tethered Cord

Conus ends at L1-L2
Variable etiologies

Fatty filum
Lipoma
Myelomeningocele
All radiographically tethered

McClone Pediatr Neurosurg 1992

Tethered Cord

3 year old with presumed idiopathic scoliosis Very high incidence of intraspinal anomalies Dobbs *et al* JBJS 2002 ■ 21.7% (10/46) neural axis abnormalities Philadelphia Shriners Pahys, Samdani, Betz Spine 2009 ■ 13[%] (7/54)

Tethered Cord

MRI reveals a low-lying conus with a fatty filum
Recommend untethering

Low morbidity
Bowman *et al*J Neurosurg Pediatr 2009

Intraspinal Anomaly and Scoliosis Correction

Timing of surgery Traditionally 2 stages operated on three months apart ■CSF leak Two hospitalizations Risk of retethering

Intraspinal Anomaly and Scoliosis Correction

- Improved neuromonitoring allows for one stage procedures
 - Samdani *et al* Spine 2007
 - Hamzaoglu *et al* Spine
 2007
 - 21 patients with congenital scoliosis/kyphosis
 No infections, neurologic deficits

Myelomeningocele and Tethered Cord Hudgins & Gilreath, 2004

 All patients with MM radiographically tethered BUT 10-30% symptomatic

- Weakness
- Gait
- Pain
- Scoliosis
- Worsening of foot and hip deformities
- Urologic

Outcomes Following Detethering

Bowman et al J Pediatr Neurosurg 2009 ■ 114 patients Pierz et al J Pediatr Orthop 2000 ■ 21 patients Herman *et al* Pediatr Neurosurg 1993 ■ 153 patients Fone *et al* J Urol 39 patients Reigel et al Pediatr Neurosurg 1994 262 patients Palmer et al J Urol 1998

Unterthering in Patients with MM

Risks
Neurologic worsening
CSF leak
Wound problems

Aim

Is untethering necessary in the asymptomatic patient with MM prior to deformity correction?

Methods

- We retrospectively identified 19 patients with MM who had:
 - no evidence of a clinically symptomatic tethered cord
 - a spinal fusion for deformity correction
 - no untethering for at least one year prior to surgery
- Minimum follow-up after fusion was 2 years
- Charts and radiographs were reviewed for neurologic or shunt complications intra-op and within 3 months of surgery

Patient Demographics

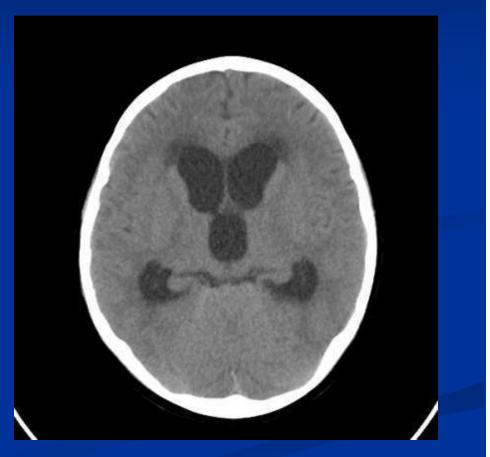
Total Patients	19
Males	8
Females	11
Avg. age at surgery	12.2 years (10-17)
Follow-up	3.9 years (2-8)
Shunt present (%)	14/19 (74%)
Motor level	
Thoracic	8
L1 or L2	7
L3	2
LA	2

Results

Untethering 1 year prior to spine correction
New neuro deficit
Pre-op major Cobb
Post-op major Cobb

0% 1 patient * 81° 33°

* Transient lower extremity weakness which returned to baseline within one month of surgery


Samdani et al Neurosurg Focus 2010

Conclusion

- Our results suggest that spinal cord untethering may not be necessary in all patients with myelomeningocele undergoing spinal deformity surgery
- Future studies with larger numbers are needed

Myelomeningocele: Always Consider the Shunt

 Majority of patients with MM will have a VP shunt Talamonti et al J Neurosurg 2007 Early postoperative death following deformity surgery from shunt malfunction Geger *et al* Eur Spine J 2007

Patient KP

- 15 you boy with MM and VPS
 - Severe curvature and pelvic obliquity
 - VPS placed at birth and not revised
- Multiple stage procedure planned
 - Stage 1: Halo, instrumentation, osteotomies
 - Stage 2: VCR with completion

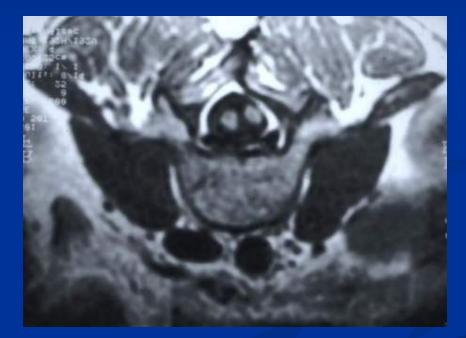
Stage 1

One hour after being positioned prone Bradycardia with hypertension Emergent shunt tap performed Elevated intracranial pressure Surgery aborted Head CT no change Neurologically intact

Possible Reasons for Increased Intracranial Pressure Coincidental shunt malfunction Unlikely Increased abdominal pressure resulting in shunt malfunction ■ Miele *et al* 2004 Neurosurgery

Options

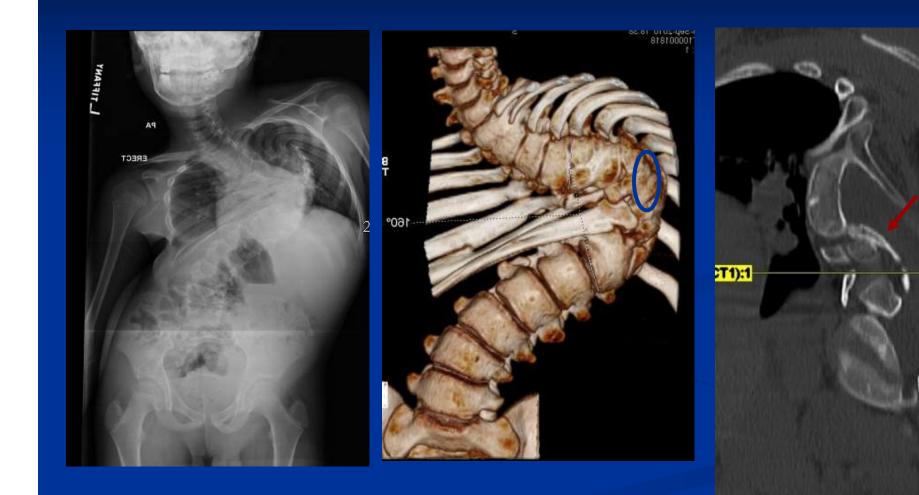
- Cancel surgery
- Externalize the shunt
 - Would require multiple neurosurgical procedures
- Intracranial monitoring and CSF drainage
- Procedure completed
 - Required CSF drainage to maintain normal ICP


Recommendations

Consider baseline HCT
Aggressive bowel prep pre-op
Abdomen free during surgery
Prep patient in a manner to allow easy access to the shunt

Samdani et al JBJS in press

Diastematomyelia


Split cord syndrome Associated with congenital scoliosis Type 1: two separate dural sacs Type 2: one dural sac Can cause tethering

Patient GF

- 12 yo boy with congenital scoliosis, diastematomyelia
 - Laminectomy and partial resection of diastematomyelia at age 4
 - Progressive, severe scoliosis and increased pain with ambulation

Options

Considered resection of diastematomyelia; however... ■ Shen *et al* SRS 2010 ■95 patients with diastematomyelia underwent deformity surgery ■ None prophylactically removed ■No neurological injuries

Post-op X-rays

Summary

- Chiari malformation with syrinx should be decompressed. A repeat MRI 4-6 months obtained to document a decrease in syrinx size.
- Not all MM patients need to be dethered prior to scoliosis correction.
- Not all patients with a diastat need removal prior deformity correction.