Management of Specific Genetic Disorders and Syndromes in the Growing Child

Paul D. Sponseller MD
Johns Hopkins University

Outline

- Diagnoses
- Principles
- Techniques
- Examples

Does Etiology Matter?

Akbarnia et al 2010

- Syndromic spines ~ 25% of EOS population
 - GSSG
- Complications/pt and infections < EOIS
- Balance deteriorated more over time
 - Compared to other diagnoses
- Big difference: Associated issues

Common Early-Onset Scoliosis Syndromes for Spine Surgeons

- Marfan
- Rett syndrome
- Skeletal dysplasias
- NF1
- New ones weekly / never-ending!!
- Systematic Approach needed
 - Common themes

Common Theme

- Diagnosis leads to potential issues
- Significant differences in course of each

Resources for Syndromes

- Online Mendelian Inheritance in Man (OMIM)
 - Available through NLM/Pub Med
 - Allows search by findings
- National Organization for Rare Disorders (NORD) (http://www.rarediseases.org/)
 - Includes summaries of rare disorders
- Medical Geneticist
 - Some become "primary care" for syndromes

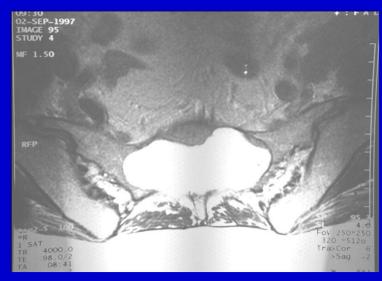
Common Themes: Examine Entire Spine (C,T,L)

- Categories of Spinal Problems
 - Instability (C1-2, T12-L1)
 - Deformity
 - Kyphosis (C, T, L)
 - Scoliosis
 - Stenosis
- Apply to Cervical, thoracic, lumbar

Common Themes - Deformity

- Bracing rarely arrests deformity
 - Marfan syndrome 17% efficacy
- Exceptions:
 - Type 1 OI
 - Some achon kyphoses
- Use only in small, flexible curves
- Tactically use to delay intervention
- Assess effect on function

Role of "Mehta cast" in Syndromes


- Reasoning:
 - goal = Delay definitive fusion til > 10 y.o.
 - Growing devices buy \sim 3-4 yrs: delay til 6-7
- "Milder syndromic"
 - some Marfan, nondysplastic NF1, unknown syndromes
 - casting can hold off kids for growing devices until age ~6
- Severe syndromic and profound NM:
 - risks versus benefits of casting versus bracing
 - General anesthesia has risks
 - Make individual decision with family

Common Themes- preop

- Consider "growing" options
 - Growing rod
 - VEPTR
 - others
 - Ideal indications: $\sim 70^{\rm o+}$ / skeletal age $5 \sim 9$

Common Themes- preop MRI

- Usually high yield in syndromes
 - Dural ectasia
 - Cord size, location
 - Stenosis
 - Bony anatomy
- When?
 - Preop or if findings dictate

Common Themes- Operative

- Don't fix short
 - Neurologic and structural problems prevail
 - Selective fusion not as likely to work

Analyze sagittal plane carefully

Common Themes -operative

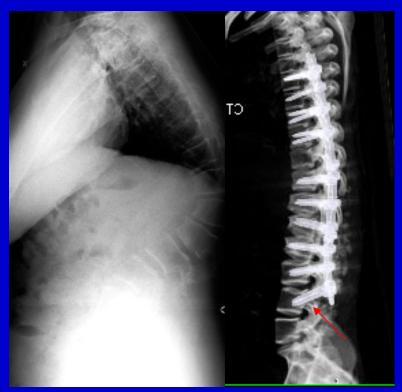
- Bleeding usually more than in idiopathic
 - Amicar / tranexamic acid
 - FFP
 - Use your "first team"

Common Operative T-L Themes

- Increased rate of fixation failure
- Narrow or dysplastic pedicles, laminae
- Suggestions:
 - Obtain good imaging in advance
 - Coned AP plain films
 - CT scans / O-arm
 - Traction films

Screws in thin pedicles

- Measure AP canal diameter
- Outside-in
 - enter lateral pedicle wall at base
 - Then angle medially to cross pedicle cortex

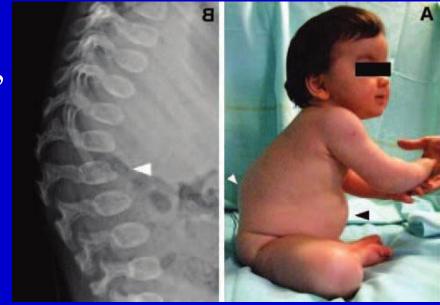


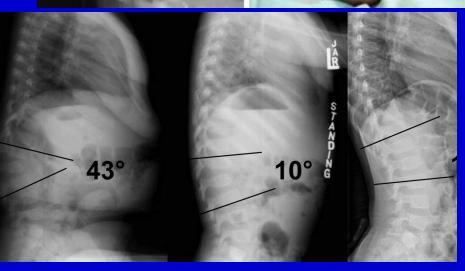
Instrumentation

- Use rib fixation as needed
- Fix all levels
- Range of rod sizes: 3.5, 4.5, 5.5 mm
- Range of screw sizes
 - 3.5, 4.0mm (cervical)
 - Pediatric 4.35, 5mm

Bone density in syndromes

- Decreased in OI, many dysplasias
- Sclerotic/brittle in NF1


Skeletal Dysplasias


- Upper cervical instability in SED, Kneist, MPS,
- Kyphosis in Larsen, Diastrophic (may improve)
- Stenosis: Achon, chondrodysplasia punctata
- Obtain baseline NM before turn

Early Dx of Hurler

- "hook-shaped vertebra"
 - Baruteau
- Vs benign kyphosis
 - Weinstein resolving

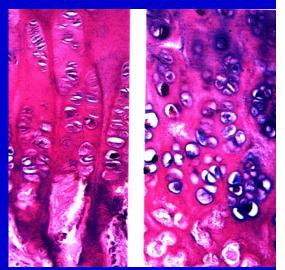
Devel delay is a sign

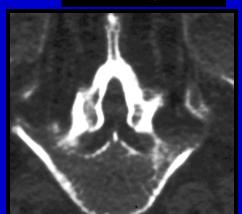
Hurler Syndrome

- Beware c-spine
 - 81% odontoid hypoplasia
 - − ~80% thoracolumbar kyphosis
 - Not halted by transplantation
- Look for L.E. contractures

Hurler TL kyphosisindications, technique for fusion

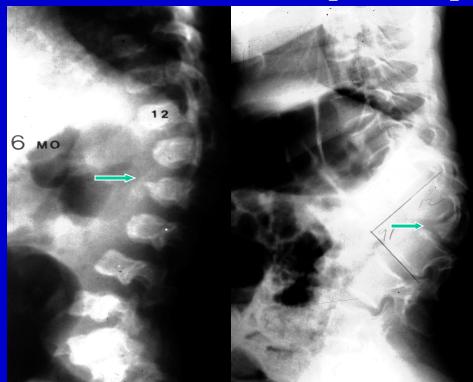
- Significant progression
 - ->30 degrees
 - Symptoms at site
 - Neurologic progression
- Anteroposterior vs posterior only





Achondroplasia

- Defect in FGFR3
- Early-onset foramen magnum stenosis
 - Some improve spontaneously
 - Suspect if sleep apnea, weakness
 - Ach milestones delayed
 - MRI, sleep study to evaluate
 - Foramen magnum decompression



Achondroplasia -Spinal problems

- Thoracolumbar kyphosis before walking
 - usually resolves shortly after walking
 - Use extension TLSO if persists past age 2

Achondroplasia

- Indications for fusion:
 - Any TL decompression for stenosis in immature patient
 - Otherwise will progress
- For deformity alone:
 - Most tolerate mild TL kyphosis

Achondroplasia: Controversies

- When to fuse for deformity alone
 - in absence of stenosis Sx?
- My preference:
 - Bracing may work in young children < 45°
 - Fuse Kyphosis over ~45-60°
 - Age over ~ 6
- Should you to fuse to sacrum?
 - Lower re-stenosis; trend to difficulties with personal care

Achondroplasia-techniques

- High risk of signal changes (~30%)
- Avoid Hooks, instruments in canal
 - Use burr
- Pedicle length ~15mm; screw <35mm
- 4.35-5 mm screws usually sufficient
- High risk of dural violation
 - Nerve roots seem pressurized

Achondroplasia- techniques

- Correct kyphosis only to best bend
- Focal Kyphosis: ?VCR- few cases, high risk

NF-1

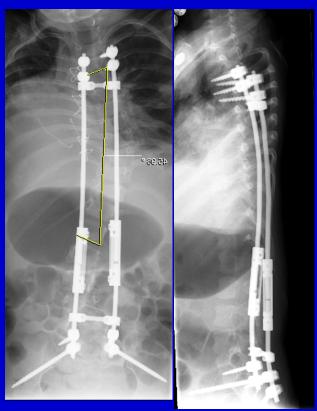
- Early-onset deformity
 - untreated- severe, high risk deformity
 - − ~20% need Tx for spine Deformity
- May affect all regions
 - And all planes!

NF1

- Dystrophic spine and DE are EOS challenges
 - Jain, SRS/ICEOS 2011 14 patients
- Definition: > 3 of:
 - Rib pencilling
 - Vertebral scalloping, wedging
 - Widened neuroforamina
 - Thin TP
 - Focal rotation

NF1-issues

- Failure of fixation
 - Sclerotic pedicles;
 - Dural erosion
- Suggestions:
 - Avoid ending in dystrophic areas
 - Manage CSF issues by avoidance, layered closure, recumbency, lumbar drain, diamox
- GR may prevent need for A&P fusion
- Circumferential fusion if severe focal deformity

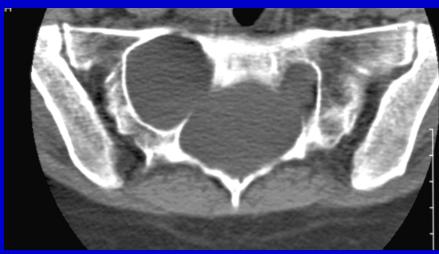

Infantile Scoliosis in Marfan

- Neonatal MFS is the most severe
 - usually neg. family history
- Delayed walking
- Increased early Cardiovascular mortality
- Suggest delaying surgery until CV stable

3 yr old Marfan

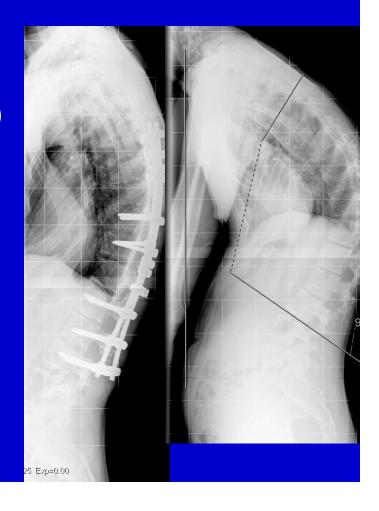
- pelvic fixation if:
 - Distal Idysplasia
 - Distal kyphosis





Bony changes from Ectasia

- Pedicles thin
 - Dysplastic looking
- Laminae thinned
- Vertebrae scalloped



Failure of Fixation: major message!

• Avoidance:

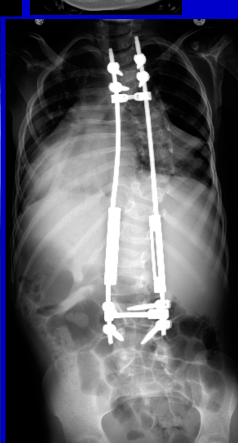
- imaging in difficult pedicles
- Add hooks if needed (3rd rod)
- Minimal rod contouring
- Add another level

"New" Syndrome: Loeys-Dietz (LDS)

- TGF beta receptor abnormality
 - Treat aggressively
- Arterial tortuosity and aneurysms
- Hypertelorism
- Cleft palate and uvula

LDS: Orthopaedics

• Cervical bifida/ instability


Scoliosis

Clubfoot

• Ligamentous laxity

Ehlers Danlos Syndrome (EDS)

- Defects in collagen or its processing
- Classical (Types 1&2; abn COL5)
 - most severe
- Hypermobility (type III; ? Defect)
 - No spinal implications
- Kyphoscoliosis (type VI abn LH)
- Arthrochalasis (type VII; abn COL1)

EDS -surgical points

- High complication rate
- Avoid anterior approach if possible
 - Vascular fragility
 - "growing" approaches help avoid this
- Increased risk of PJK/DJK
- Increased bleeding risk
 - Antifibrinolytics
- ? Wound infection risk

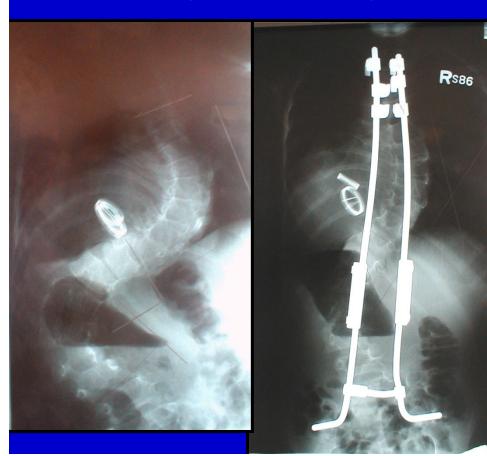
Prader-Willi Syndrome

- Missing paternal chromosome 15
- 1:15,000
 - 3:1 male
 - 30-50% TL spine deformities
- GH improves prognosis
- High complications:
 - Neuro change
 - Failure of fixation
 - infection

What Have we learned about syndromes

- Syndrome findings vary
 - Genome modifies mutation
- Diagnosis important for specific issues

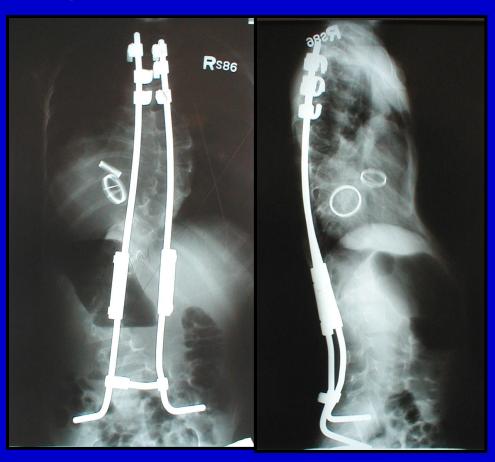
- Surgery: a few differences
 - Natural history important to understand for all genetic disorders


Infantile Marfan Syndrome

- 4+3 yrs old
- 3 valves replaced
- Prior brace
- 90° thoracic
- 105° lumbar
- 60° TL kyphosis

Follow-up

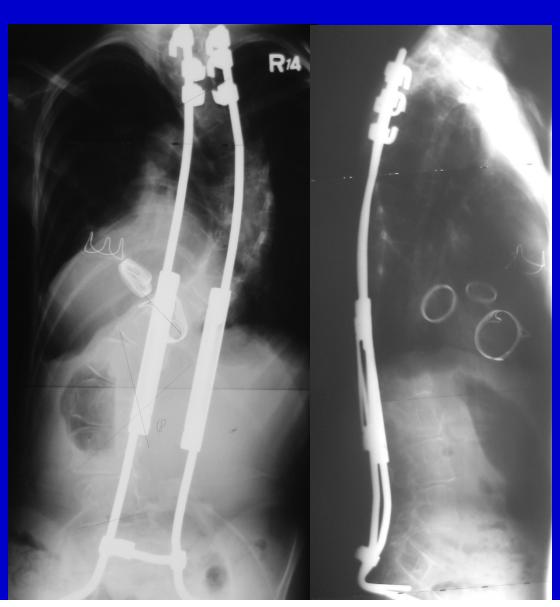
- 4 heart valves!
- Yearly distraction
- 9 cm gain in height



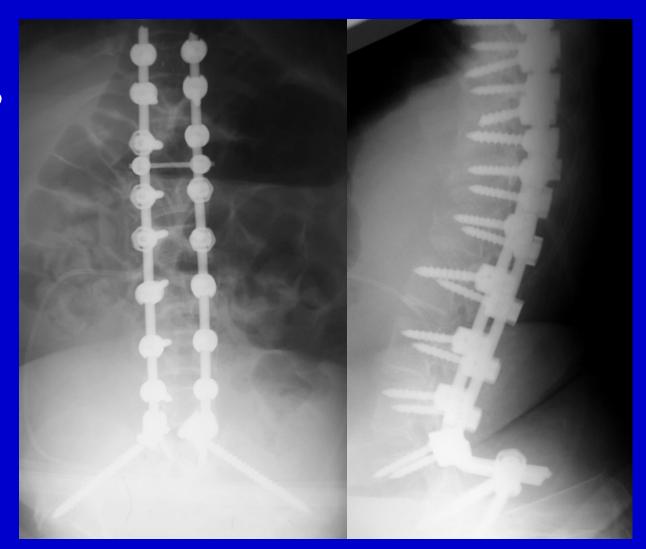
Growing rods

- T3- pelvis
- 7 lengthenings
- 11 cm so far
- CSF pocket

Marfan


Now with 4 heart valves

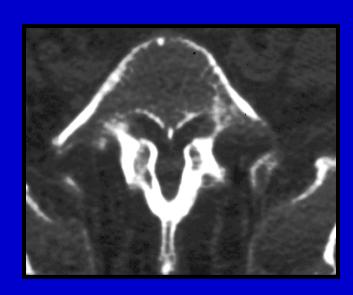
- Cantilever bend
 - At last procedure



5 yr follow up

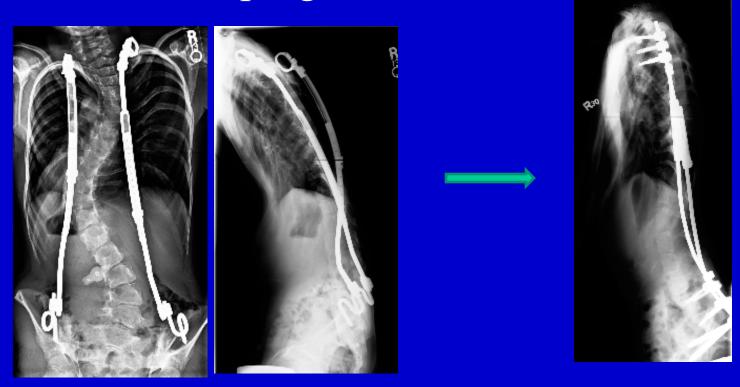
• Function?

Revision


• To pelvis

Achondroplasia: controversies

- 3. How far to fuse?
 - Extent of laminectomy (usually L4)
 - Down to sacrum?
 - If Lami to L5?



Thank You

VEPTR in Marfan

• Forward lean progresses

VEPTR in Marfan

Stickler Syndrome

- Mutations found in COL 2,9, 11
- Kyphosis, Scoliosis, endplate changes
- DJD
- Be aware of ocular risks

Loeys-Dietz Syndrome

- Aneurysms treated aggressively
- Prediction: It will be frequently recognized
- Clubfoot, scoliosis, arachnodactyly: Open the mouth!

Textbooks

- L&W
- Goldberg: The Dysmorphic Child