

Phenix Spine Rod and Childhood Scoliosis

The Early Results

Ian Torode Royal Children's Hospital Melbourne, Australia

Disclosures

Consultant to Medtronic Spine

Designer of Variable Axis Connector
 – No Royalties

Phenix and Medtronic have no connection

Early Onset Severe Scoliosis

unsolved problem in spinal deformity surgery

The Cure is the "Holy Grail" of orthopaedic surgery

In this quest there will be disappointments.....

..... and challenges

- There will be a few cheap imitations.....

Surgery

- Non-fusion or "Growth Rods" have been used for 40 years.
- Failure rates were (are) high
- Reoperating every 6 months is depressing, and time consuming for both patient and surgeon.

OTTA PATION -----GRAIL Written and performed by **GRAHAM CHAPMAN** JOHN CLEESE **TERRY GILLIAM** ERIC IDLE **TERRY JONES MICHAEL PALIN CAROL CLEVELAND CONNIE BOOTH** JOHN YOUNG PARENTAL GUIDANCE RECOMMENDED

FOR PERSONS UNDER 15 YEARS

Dual Rod Systems

- Certainly better than single devices for hook loss
- Less complications but still > 30%
- Still need repeated operations for years
- Spontaneous fusion still occurs

Phenix Rod

 Arisen from a desire for a lengthening device, with internal power and avoiding repeated operations.

The Phenix Philosophy

Aims:

- To correct deformity
- Avoid repeated operations
- Constant correction allow growth to modify deformities
- Instrument only the primary curve i.e. avoid top to bottom instrumentations
- Parent lengthening ie ownership

.....child of these two Frenchman

Jean Dubousset

Arnaud Soubeiran

Superb intellect plus talented orthopod and engineer

Phenix System

 Based on magnetised internal system with an external control magnet.

 i.e. by manipulating a magnet close to the device the internal driver can be controlled to lengthen or shorten.

Demands of any Growth System

- Horsepower in this case the Phenix Rod
- Fixation to the Spine
 - Hooks and screws
 - Fixation between the driving rod and the hook/screw complex.

Phenix Rod System

Spine Rod - 3 versions to date

– Version 1

- used a reciprocating action of the drive magnet
- 5cm capacity
- One way device
- Required about 50+ Magnet movements per mm.

3 versions of the spinal rod

- Version 2

- 1 motorised rod,
- revolving action of driving magnet
- two way device
- 5cm capacity
- Only 5 revolutions per mm.

• 3 versions of the spinal rod

Version 3

- Two driven rods
- 5 rev's per mm each rod
- Two way device
- Each rod can deliver 4+ cm.
 - Total capacity depends on design
- Cylindrical driving magnet

 To date more reliable, efficient, more user friendly.

The Australian Series to date.....

Patient Profile (13)

• Syrinx 2

Spina Bifida 1

- Cong Rib Fusions/Cong Scoli 2
- Cong Heart Disease 2
- Neurofibromatosis 1
- Fibromatosis 1
- Syndromic 1
- Myopathy 1
- Autistic 1
- Marfans 1

Note: No true idiopathic patients

SUPINE

PRONE

PRONE

Abandoned

Magnetic Growth Rod as "VEPTR"

45mm in 8m.

Total length to date = 54mm

HH

Spina Bifida

Supine stretch

Total Gain to Date 90mm

M.B. 7yrs Marfans Cardiac involvement – valve replacement

Fixation between the Phenix rod and the Spine Fixation to the Spine Choice of hooks or screws Connection between rod and hook construct Solid vs. flexible

Modes of Failure

1. Fail at fixation to spine Hook or screw loss of fixation

2. Failure of connection to Phenix rod Fuse technique

3. Failure of Phenix Rod

Hooks vs Screws

Most of these cases have hook fixation

Why?

Bias from 30 years frustrations

Need a second option

When hooks fail – fall back is screw

Screw failure potentially devastating

Hook dislodgement in 2 patients (of 13) avge. time over 2 years

To Reduce Pullout – Build in a failure point

Use of a soft rod to fail rather than disrupt the hooks/screws

Autistic air guitarist –fracture of 5.5 titanium rod

Rod Failures

Version 1 rods – only 2 failures,
– each after 18 months, 45mm & 30mm.

Version 3 rods – 3 failures ,

- all at marker ring,
- Marker ring no longer used

Complication: Broken Rod at ring

•Multiple fixation points (i.e good fixation) and large correction leads to fixation or rod failure

V3 Rods

All breaks are at the marker ring

Current rods do not have this marker

The Relationship

To lessen these induced forces, one must use a flexible rod or have a flexible connection between rod and fixation construct.

The Divorce Potential

- There must be a relationship between correction of deformity, loads induced in the rod and loads induced on the fixation to the spine.
- Excessive loads may lead to rod breakage or fixation failure.
- Solution is to introduce flexibility and load dissipation into system

What happens if you push a mobile connector ???

Mobile Connector

Set up in "pull" mode.

Patient of Acke Ohlin, Sweden.

Change in Body Shape

11y7m

12y 10m

13y 5m 40mm

14y4m +23mm

Total to date 80mm

Patient	Cobb Start	Cobb Current	Length gained	Oper's after insertion
1	82	59	20	2 Failed rod V2
2	99/97	88/81	16	1 Failed parent/patient
3	73	34	17	2
4	94	57	20	2
5	57	37	20	2
6	77	45	23	0
7	107	70	32	1
8	76	42	65	3
9	112	71	80	4
10	98	45	90	2
11	60	30	4	0

Total Length Gained 387mm. Extra Operations 19

Unexpected bonus

- Major improvement in cosmesis and trunk shape with slow constant lengthening.
- Surprisingly low hook cut out rate with slow distraction (2 patients – after 3+ yr)
- Development of the mobile connectors has been a major advance

Summary:

While there have been mechanical teething problems, the gains in most patients have been significant with every expectation of more improvement to follow. This device is not a panacea for childhood spinal deformity but is a major step forward in management of these children.

Thankyou.....