5th International Congress on Early Onset Scoliosis and Growing Spine

Casting for Early Onset Scoliosis: The Pitfall of Increased Peak Inspiratory Pressure

A Dhawale, SA Shah, S Reichard, LH Holmes, R Brislin, KJ Rogers, WG Mackenzie Nemours / Al duPont Hospital for Children, Wilmington, DE

Background

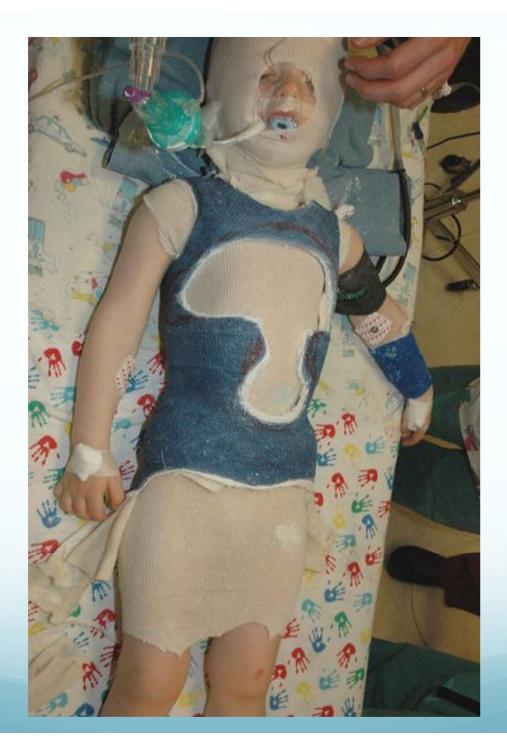
- Serial cast correction plays a large role as a treatment option for progressive EOS
- Body casting can lead to restriction of chest and abdominal expansion and result in decreased chest wall compliance.
 - Many of these patients are already compromised
- No studies on ventilation in casting for EOS

Methods

- After obtaining IRB approval, we reviewed the records of patients with EOS who underwent serial casting under GA between 2007-2010
- The anesthesia technique was standardized
- Data were obtained during **39** serial cast correction procedures performed under GA in **seven** children

Casting technique

- The procedure was performed on a casting table
- A stockinet layer was applied over the trunk and abdomen
- Cast was applied using the elongation, derotation and flexion technique described by Cotrel and Morel
- Anterior and posterior windows were made in the cast to allow abdominal/chest expansion and curve derotation as described by Mehta
- d'Astous and Sanders, JPO 2009



Courtesy of Jacques d'Astous MD

Anesthesia technique

• Standardized:

children were intubated with rigid ET tubes,

tidal volume was held constant at 8-10 cc/kg using volume control ventilation

- PIP recorded at baseline before cast (PIP1)
- after cast application prior to window (PIP2)
- after window cutout prior to extubation (PIP3)

Radiological measurements

- Cobb angles,
- Rib vertebral angle difference (RVAD),
- apical vertebral rotation (AVR) measured with the Nash and Moe method
- phase of the apical rib were recorded
- Measurements recorded before casting and at followup

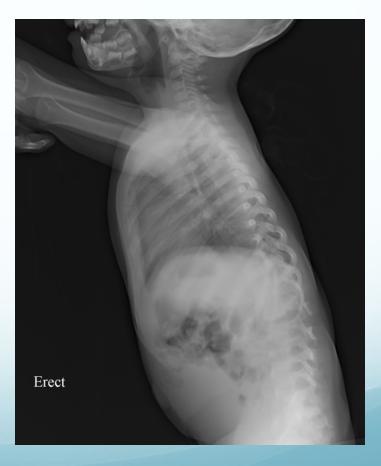
No.	Diagnosis	Sex	Age at	Initial	Age at First	No. of Casts	Age at	Follow-up	Status
			Presentation	Treatment	Casting		Follow-up	Since	
			(months)		(months)		(months)	First Cast	
1	ISS								VEPTR
	Pierre Robin	m	6	brace	12	5	35	23	surgery
2									continue
	IIS	m	12	brace	26	8	66	40	cast
3	IIS								Shilla
		f	24	brace	42	7	67	25	procedure
4									
	IIS	m	6	brace	24	4	44	20	brace
5	ISS,								
	Diastrophic					5			continue
	dysplasia	f	7	brace	23		36	13	cast
6									continue
	ISS	m	6	brace	14	5	27	13	cast
7				observatio					
	IIS	m	7	n	12	5	35	23	brace

Male, 12 months

Cobb - 31° , RVAD- 14°

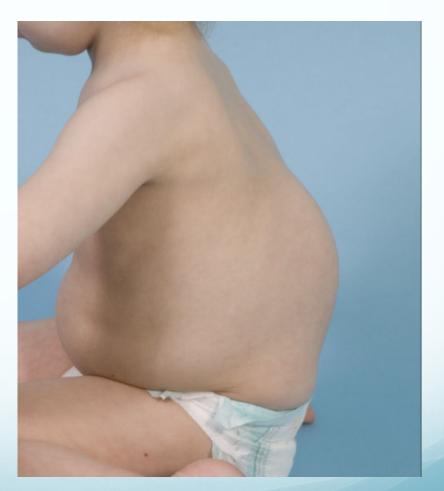
SUPINE

Lat Cobb - 30°



Initial treatment in Wilmington brace At 26 months - casting

Thoracic Cobb 41°, RVAD 14 Lumbar Cobb 56°



Lat Cobb 30°

Clinical Photos

Lumbar Cobb 24°

...lost to follow up until age 32 months

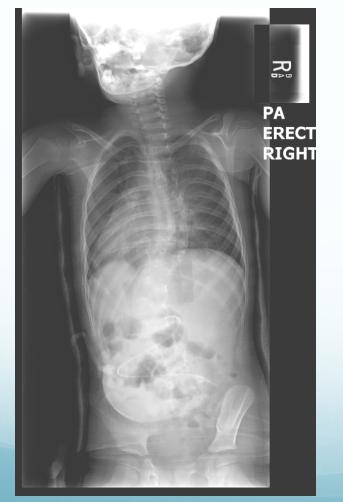
Cobb 70°

Lumbar Cobb 35°

Lumbar 68°, Thoracic 48°

Lumbar 35°

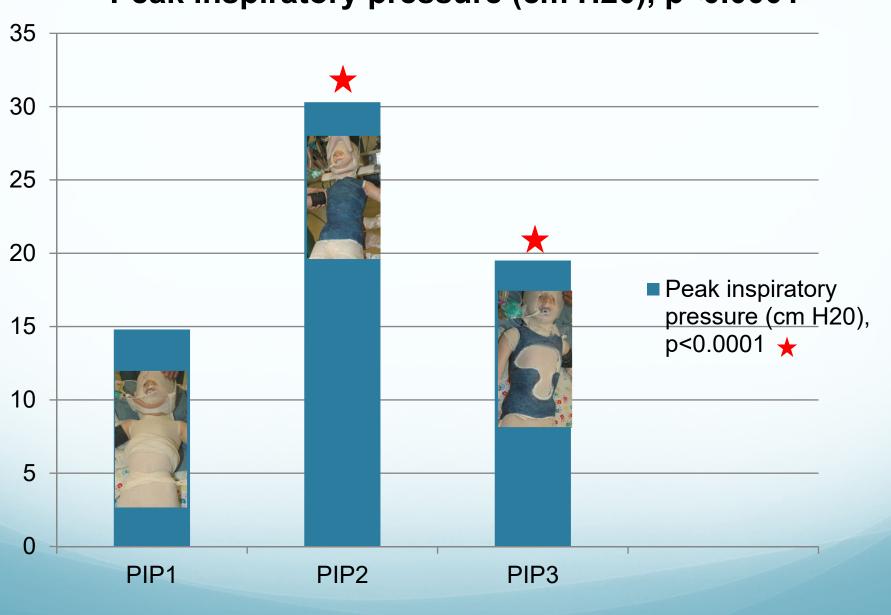
Cobb 67°


48 months Cobb 32°

Cobb 58°

Cobb 50°

Cobb 51°


Changes in PIP

Results n = 39

variable	Mean	SD	Range	F (df)	p
PIP 1	14.8	5.5	2-27	43.9(2)	<0.0001
PIP 2	30.3	9.6	3-50		
PIP 3	19.5	6.8	3-33		

PIP1- Peak inspiratory pressure before cast application PIP2- Peak inspiratory pressure after cast application PIP3- Peak inspiratory pressure after window cut -out

Peak inspiratory pressure (cm H20), p<0.0001

Pressure Increase

- There was a 104% increase after casting and 32% increase after window cut-out from the baseline PIP levels.
- There was a significant difference in PIP on repeated measures ANOVA, f = 43.8, p<0.0001.

Complications

- Intra-operatively there was difficulty in maintaining ventilation during 2 procedures and one hypotensive episode.
- One patient developed hypoxemia after casting and another patient had delayed difficulty in breathing.

Radiological results

- There was an improvement in thoracic Cobb angles in four patients
- arrest of curve progression in one patient
- and worsening curve magnitude in two patients.

Table 4. Radiological values

	Pre-casting						At Follow-up						
	Thoracic				Lumbar		Thoracic				Lumbar		
	Cobb				Cobb	Lumbar	Cobb				Cobb	Lumbar	
Pt No.	(degrees)	RVAD	Phase	AVR	(degrees)	AVR	(degrees)	RVAD	Phase	AVR	(degrees)	AVR	
1	60	36	2	3	46	2	86	39	2	3	70	2	
2	41	14	1	2	56	2	40	14	2	2	51	2	
3	39	14	1	1	44	2	60	17	2	2	53	2	
4	22	12	1	1	29	2	15	14	1	1	25	1	
5	35	30	1	2	45	2	32	28	1	2	30	1	
6	76	35	2	2	33	1	66	50	2	2	46	1	
7	63	31	1	2	46	2	15	16	1	1	-	-	

AVR, Nash and Moe apical vertebral rotation; RVAD, rib vertebral angle difference in degrees

Limitations

- We had a small number of patients who underwent serial cast correction
- The group of patients was heterogeneous with IIS and ISS patients
- There are inherent limitations of a retrospective study design
- In spite of these limitations, this study addressed an important and clinically relevant question, and the findings of increased PIP were seen in a consecutive series.

Conclusions

- Casting resulted in an increase in PIP due to the transient restrictive pulmonary process, the PIP reduced after windows were cut out but not to baseline.
- In patients with underlying pulmonary disease, the casting process may induce respiratory complications.

Significance

- Be aware of the restrictive nature upon a patient's chest wall and abdomen of body casts
- Pay particular attention to increases in peak inspiratory pressures prior to belly window cutout
- Be prepared to manually ventilate the patient with a secure airway if necessary.
- Not a contraindication to casting

References

1. Scott JC, Morgan TH. The natural history and prognosis of infantile idiopathic scoliosis.

J Bone Joint Surg Br. 1955;37:400-413.

- 2. Reid L. Lung growth. In : Zorab PA, ed. Scoliosis and Growth : *Proceedings of a Third Symposium. London Churchill Livingstone;* 1971:117-121.
- 3. Goldberg CJ, Gillic I, Connaughton O, et al. Respiratory function and cosmesis at maturity in infantile onset scoliosis. *Spine (Phila Pa 1976). 2003;28:2397-2406.*
- 4. Cotrel Y, Morel G. [The elongation-derotation-flexion technique in the correction of scoliosis.] *Rev Chir Orthop Reparatrice Appar Mot. 1964;50:59-75 (in French).*
- 5. Risser JC. The iliac apophysis : an invaluable sign in the management of scoliosis.

Clin Orthop. 1958;11:111-119.

- 6. Mehta MH. Growth as a corrective force in the early treatment of progressive infantile scoliosis. *J* Bone Joint Surg Br. 2005;87:1237-1247.
- 7. Sanders JO, D'Astous J, Fitzgerald M, et al. Derotational casting for progressive infantile scoliosis. *J Pediatr*

Orthop. 2009;29:581-587.

- 8. Mehta MH. The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. *J Bone Joint Surg Br.* 1972;54:230-243.
- 9. Nash CL Jr, Moe JH. A study of vertebral rotation. J Bone Joint Surg Am. 1969;51:223-229.
- 10. Sankar WN, Skaggs DL, Yazici M, et al. Lengthening of dual growing rods and the law of diminishing returns. *Spine (Phila Pa 1976). 2011;36:806-809.*
- 11. Bassani MA, Mezzacappa Filho F, Coppo MR, et al. Peak pressure and tidal volume are affected by how the neonatal self-inflating bag is handled. *J Pediatr (Rio J). 2009;85:217-222.*