Pulmonary Function Outcomes in Early-Onset Scoliosis (EOS) – Operative versus Non-operative Treatment

> Charles E. Johnston, MD Anna McClung BSN, RN Scott Paradise

Disclosures

- Anna McClung BSN, RN
- Charles E. Johnston, MD
- Scott Paradise

No Disclosures a,e Medtronic; e, Elsevier No Disclosures

- a) Grants/Research Support
- **b)** Consultant
- c) Stock/Shareholder
- d) Speakers' Bureau
- e) Other Financial Support

Background

- Recognized relationship between spine/chest deformity and pulmonary impairment in EOS
- However, little in the literature regarding correlation between radiographic measures and pulmonary outcomes
- We demonstrated correlation between thoracic height and width and CT lung volumes, however calculations based on x-ray parameters were too variable to replace the need for CT (IMAST, ICEOS-2010)
- Purpose of this study is to examine plane film parameters to PFT outcomes

- Compare pulmonary function tests (PFT) from EOS patients treated operatively those treated non-operatively, and correlate with anatomic indicators on x-ray
- Hypothesis: patients with less deformity and larger thorax have improved PFT values

Methods

- IRB prospective single institution study
- All EOS patients with at least 2 serial PFTs from 2004 to present
- Neuromuscular patients excluded
- Radiographic parameters documenting thoracic deformity correlated to FVC and FEV1 absolute volumes (AV) and percentage predicted (%)

Clinical Results

- Non-operative (observation, cast, brace) = 25 with 65 PFTs
- Operative (growing construct) = 19 with 78 PFTs
 9 patients with both preoperative and postoperative PFTS
- Age at PFT (7.8 \pm 1.1yrs vs. 7.5 \pm 1.5yrs, p=0.34)

Non-op Brace Pt

Preop G.R. Pt

Radiographic Results

	Non-Operative	Operative	P-value
Major Cobb°	41.1±20.2	54.9±15.9	.008
Kyphosis°	37.8±14.6	53.8±19.4	.003
Thoracic Height cm	18.7±2.2	17.3±3.2	.064
MC End Vertebra	10.9±3.5	$10.8{\pm}2.0$.927

Preop G.R. Pt

Non-op

Brace Pt

PFT Absolute Volumes

PFT % Predicted

Non-Operative Correlations

- More distal end vertebra (p=.01, R=0.47) and gains in T6 width (p<.009, R=0.56) predicted better FEV1/FVC AV
- Gains in thoracic height (p<.0002, R=69) predicted better AV and % FEV1/FVC
- Increase in Cobb angle (p<.02, R>50) predicted no gain in AV and % FEV1/FVC
- No effect: Age, kyphosis and T6 depth

Operative Correlations

- Gain in thoracic height (p<.003, R=.68) predicted improved AV FEV1/FVC
- Gain in T6 width (p<.02, R=43) predicted improved AV and % FEV1/FVC
- No effect: Age, end vertebra, Cobb, kyphosis and T6 depth

Preoperative vs. Postoperative Correlations

- Increase in thoracic height and width at postop corresponded to improved AV FEV1/FVC (p<.01, R>.77)
- Loss of correction of major curve related to decrease in % predicted FEV1/FVC (p=0.009, R>.65)

Conclusions

- Patients with less severe EOS have better pulmonary function compared to their peers who require surgical intervention
- Significant relationships found between PFT outcomes in both groups and:
 - Major curve magnitude
 - Thoracic height
 - Thoracic width
- The above verifies the value of these parameters and confirms the study hypothesis

Significance

• In patients with growing constructs increasing chest diameters leads to improved absolute values on PFTs

• This is the first study to document that anatomic improvement leads to enhanced physiologic function