VEPTR Treatment of Jarcho-Levin Syndrome

Ajeya P Joshi MD Joshua G Karlin BS Davin Cordell MD James W Simmons DO PhD

5th International Congress on Early Onset Scoliosis & Growing Spine November 18-19, 2011

Background

- Jarcho-Levin Syndrome
 - Associated with thoracic insufficiency syndrome (TIS)
 - Historically an eponym for a multitude of radiographic and skeletal deformities.
 - Currently subtyped via phenotype by
 - distribution of skeletal anomalies
 - inheritance pattern
 - prognosis

Background

Spondylocostal dysostosis (SCD)

- Intrinsic rib anomalies such as broadening, bifurcation, and fusion with no symmetric fusion of the ribs.
- Also known as Lavy-Moseley syndrome.
- <u>Scoliosis</u> and <u>early demise due to</u> <u>respiratory failure</u> secondary to TIS is common.

Background

Spondylothoracic dysplasia (STD)

- Fusion of all the ribs at the costovertebral joints bilaterally due to <u>segmentation and</u> <u>formation vertebral defects</u> throughout spine without intrinsic rib anomalies
- "Crab-like" radiographic distinction.
- More severe subtype, <u>estimated</u>
 <u>25% survive to adulthood</u>, those
 surviving have a lung volume
 <u>28% normal</u>.
- Scoliosis and No Scoliosis subtypes observed

Objective

Jarcho-Levin patients with VEPTR treatment

- Quantify the changes in <u>thoracic architecture</u>
- Assess the changes in <u>respiratory status</u>
- Identify <u>complications</u> associated with treatment

Methods

- IRB approved retrospective study
- Chart Review
 - Demographic: Age at initial implant
 - Respiratory Status: Assisted Ventilation Rate (AVR) scale
 - Complication
- Radiographic Assessment
 - Cobb Angle
 - Thoracic Height
 - Hemi- and Thoracic Widths
 - Space Available for lungs (SAL)
- Data analyzed using paired t-test and Mann-Whitney U test

Results

	Cohort	Spondylocostal Dysostosis (SCD)	Spondylothoracic Dysplasia with Scoliosis (STD-S)	Spondylothoracic Dysplasia without Scoliosis (STD-N)
Patients	29	10	9	10
Age - 1st Implant	3.7	3.07	4.67	3.50
Age - Latest Follow-Up	10.4	11.00	11.86	8.38
Mean TIP	6.7	7.94	7.19	4.88

Spondylocostal Dysostosis (SCD)

	Cobb	Thoracic Height (mm)	Thoracic Width (mm)	SAL
Pre- operative	54.3	98.6	135.8	0.774
Post- operative	35.8	108.8	143.2	<u>0.894</u>
<i>t</i> -test	0.04	0.02	2 0.14	0.04
Latest Follow-Up	323	<u>143.2</u>	<u>178.0</u>	<u>0.934</u>
<i>t</i> -test	0.014	0.00007	0.00094	0.0098

Spondylothoracic Dysplasia with Scoliosis (STD-S)

	Cobb	Thoracic Height (mm)	Thoracic Width (mm)	SAL
Pre- operative	23.9	106.7	157.7	0.907
Post- operative	18.8	<u>112.7</u>	<u>163.6</u>	0.937
<i>t</i> -test	0.003	0.0004	0.1	0.4
Latest Follow-Up	19.2	<u>135.7</u>	<u>192.7</u>	0.965
<i>t</i> -test	0.01	0.0004	0.0016	0.12

Spondylothoracic Dysplasia without Scoliosis (STD-N)

	Cobb	Thoracic Height (mm)	Thoracic Width (mm)	SAL
Pre- operative	5.1	91.2	156.3	0.964
Post- operative	4.1	<u>93.6</u>	<u>165.5</u>	1.006
<i>t</i> -test	0.2	0.017	0.01	0.09
Latest Follow-Up	25	<u>112.0</u>	<u>188.0</u>	1.015
<i>t-</i> test	0.009	0.00012	0.00003	0.04

Results

Increased **symmetry** was achieved with <u>initial</u> VEPTR treatment and <u>maintained</u> throughout course of treatment.

Results

Increased <u>thoracic height and width</u> were achieved with <u>initial</u> VEPTR treatment and <u>maintained</u> throughout course of treatment.

Discussion

- There were significant gains in thoracic height, at 31% of normal.
- AVR performance increased (7) or remained at room air (20) in 94% of the cohort (27 of 29).
 - No subtype showed a statistical difference in AVR improvement.
 - 2 unchanged patients still under active treatment.
- 55% (15 of 27) complications were migrations/dislodgements.
- VEPTR achieved success in treating all Jarcho-Levin patients, while its most beneficial impact varied between subtypes according to that subtypes perceived impairment and thus, planned course of treatment.

References

- Solomon L, Bosch-Jime'nez R, Reiner L. Spondylothoracic dysostosis. Arch Pathol Lab Med. 1978;102:201–205.
- 2. Campbell RM, Hell-Vocke AK. Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. J Bone Joint Surg Am. 2003;85:409–420.
- 3. Campbell RM, Smith M. Thoracic insufficiency syndrome and exotics scoliosis. J Bone Joint Surg Am. 2007;89:108–122.
- 4. Franceschini P, Grassi E, Fabris C, et al. The autosomal recessive form of spondylocostal dysostosis. Pediatr Rad. 1974;112:673–675.
- Turnpeny PD, Bulman MP, Frayling TM, et al. A gene for autosomal recessive spondylocostal dysostosis maps to 19q13.1-q13.3. Am J. Hum Genet. 1999;65:175–182.
- 6. Walter E. Berdon, Lampl, Brooke S. et al. Clinical and radiological distinction betweenspondylothoracic dysostosis (Lavy-Moseley syndrome) and spondylocostal dysostosis (Jarcho-Levin syndrome). Pediatr Radiol. 2011. 41:384–388
- 7. Teli M, Hosalkar H, Gill I, et al. Spondylocostal Dysostosis. Thirteen new cases treated by conservative and surgical means. Spine. 2004;29:1447–1451.
- 8. Cornier AS, Ramirez N, Arroyo S et al. Phenotype characterization and natural history of spondylothoracic dysplasia syndrome: a series of 27 new cases. Am J Med Genet A. 2004. 128A:120–126
- 9. Cornier AS, Staehling-Hampton K, Delventhal KM et al. Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet. 2008. 82:1334–1341
- 10. Kim, Daniel H. et al. Surgery of the Pediatric Spine. ISBN 978-1-58890-342-6
- 11. Campbell RM, Smith MD, Mayes TC, et al. The characteristics of thoracic insufficiency syndrome associated with fused rib and congenital scoliosis. J Bone Joint Surg Am. 2003;85:399–408.
- Betz R, Mulcahey M, Ramirez N, et al. Mortality and lifethreatening events after Vertical Expandable Prosthetic Titanium. Rib surgery in children with hypoplastic chest wall deformity. J Pediatr Orthop. 2008;28:850–853.
- Ramirez, Norman et al. Vertical Expandable Prosthetic Titanium Rib as Treatment of Thoracic Insufficiency Syndrome in Spondylocostal Dysplasia. J Pediar Ortho. 2010. 30:6:522,526.
- Ramirez, Norman et al. Vertical Expandable Prosthetic Titanium Rib as Treatment of Thoracic Insufficiency Syndrome in Spondylocostal Dysplasia. J Pediar Ortho. 2010. 30:6:522,526.

THANK YOU