Three Dimensional Analysis of Hemimetameric Segmental Shift

Department of Orthopedic and Spine Surgery, Meijo Hospital

Toshiki Saito, Noriaki Kawakami, Taichi Tsuji, Tetsuya Ohara, Yoshitaka Suzuki, Ayato Nohara, Ryo Sugawara, Kyotaro Ohta, Kazuki Kawakami

Hemimetameric Segmental Shift (HMMS) (Lheman-Facius, 1925)

- ✓ Two or more hemivertebrae (HV)
- Exists on both left and right sides of the spine
- ✓ Separated by at least 1 normal vertebra

however,

- Reports of HMMS are rare.
- Previous reports have been done only through simple X-Ray images.
- Not a single report has been conducted using 3D-CT Images.

Classification of Congenital Scoliosis using 3D-CT (Kawakami et al, Spine, 2009)

Discordant Anomaly

Mismatch among the anterior and posterior segments

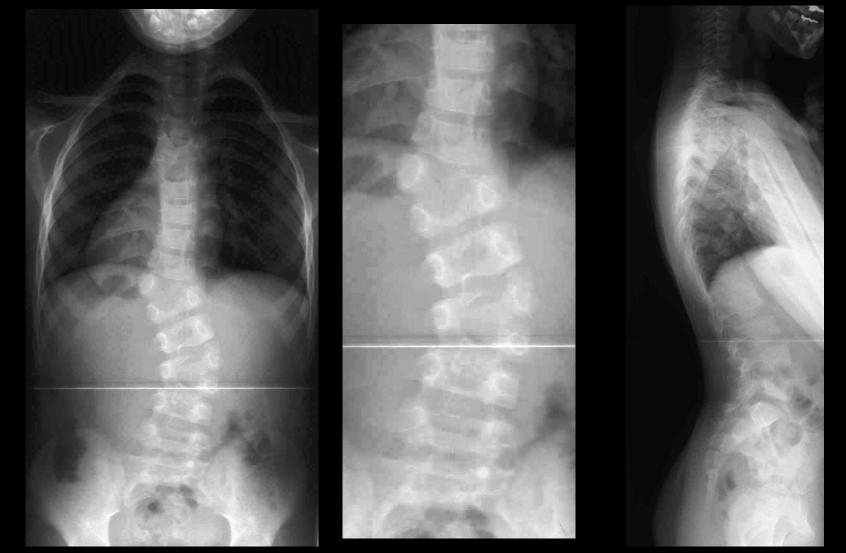
3D-CT is indispensable to analyze the morphology of congenital scoliosis

Purpose

To three dimensionally analyze the morphology and clinical features of HMMS

Materials and Methods

Congenital scoliosis (1998-2011) n=312 HMMS n=22 (7.1%)

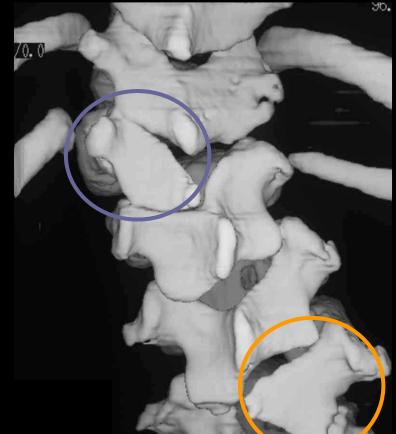

22 cases (10 males, 12 females)Age at the first visit:6 years 11 months
(4 months ~18 y.o.)Imaged using 3D-CT: 20 cases
(Age at 3D-CT: 9 y.o., 2~21 y.o.)

20 patients were evaluated by analyzing three-dimensional morphology according to Kawakami's classification, particularly paying attention to the posterior structure of HVs.

Number and Location of Hemivertebrae in 20 Patient																				
Number of HVs	n=2 (13 cases)									n=3 (5 pts.)				n=4 (2 pts.)						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
T1																	L		R	
T2													L							
Т3												R								R
T4																	R			
Т5																R		L		
Т6																				L
Τ7														L			R			
Т8											R				L	L		R	L	R
Т9																				
T10								L				L	R	R	L				R	L
T11	R																			
T12					R	L	R	R			L									
T13															R				R	
L1									R					L		R				
L2	L									L										
L3						R	L											L		
L4		R	L	L						R										
L5					L				L											
L6		L	R	R																

Patients with 2 hemivertebra were most common to have hemivertebra in the thoracolumbar and lumbar spine, while patients with 3 or more hemivertebra was in the thoracic spine.

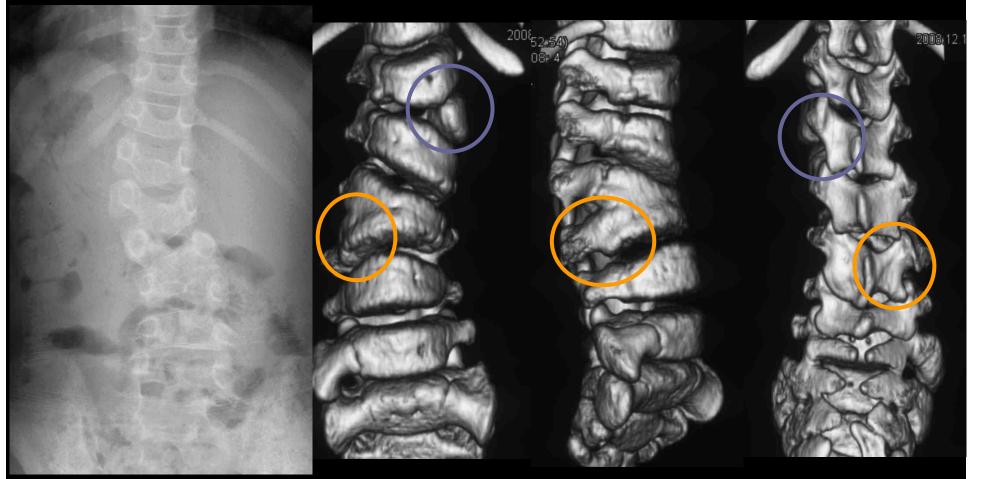
Case 1. 6 y.o. Male



Lt T11; FSHV, Rt L3; FSHV

FSHV: Fully Segmented Hemivertebrae

Case 1. 6 y.o. Male



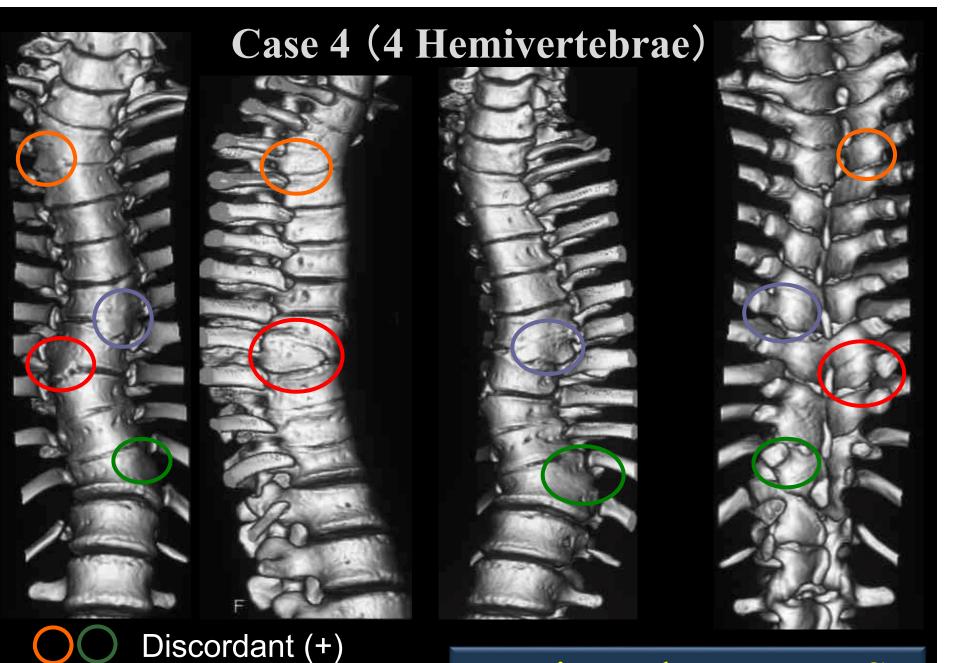
Lt T11; FSHV+FSHL, Rt L3; FSHV+FSHL FSHL: Fully Segmented Hemilamina

Malformations existing at the equal level in each of the anterior and posterior sides (unison HMMS).

Case 2. 5 y.o. Female

Lt L2; FSHV, Rt L4; FSHV Posterior elements are normal Malformations existing at an unequal level in each of the anterior and posterior sides (discordant HMMS).

Case 3. (3 Hemivertebrae)



Discordant (+) Discordant (-)

Discordant HMMS

Discordant (-)

Discordant HMMS

Differences Between Unison-HMMS and Discordant HMMS

		unison HMMS (n=7)	discordant HMMS (n=13)				
	2	7	8				
Number of	3	0	3				
HVs	4	0	2				
Average area malformed vert		3.6	6.4				

7 patients were classified as unison HMMS where all 7 of these patients had 2 hermivertebra. Average area of malformed vertebra in this group was 3.6. On the other hand, 13patients were classified as having discordant HMMS, where 8 patients had 2 hemivertebra, 3 had 3 hemivertebra and 2 had 4 hemivertebra. Average area of malformed vertebras were 6.4 in this group.

Conclusion

- Through the analysis of 3D-CT images, HMMS was classified into unison and discordant types.
- Discordant HMMS existed among 13 patients out of 20 (65%), where all patients with more than 3 HVs were of this type.
- Out of the 12 patients with 2 HVs, 7 patients (58%) had discordant HMMS.
- Three-dimensional evaluation of multiple HVs is mandatory to prevent wrong level surgeries.
- Although the etiology of HMMS is still unknown, it can be speculated that contralateral multiple HVs is not only a simple formation failure but instead mixed with a mismatch phenomenon; so-called "coupling failure".