Biomechanical Evaluation of 4 Different Foundation Constructs Commonly Used in Growing Spine Surgery: Are Rib Anchors Comparable to Spine Anchors?

> Behrooz A. Akbarnia, MD, Burt Yaszay, MD, Muharrem Yazici, MD <u>Nima Kabirian, MD, Kevin R. Strauss, ME, Diana Glaser, PhD</u>

> > San Diego Center for Spinal Disorders Rady Children's Hospital San Diego K2M, Inc.

6th International Congress on Early Onset Scoliosis, Dublin, Ireland. November 15-16, 2012

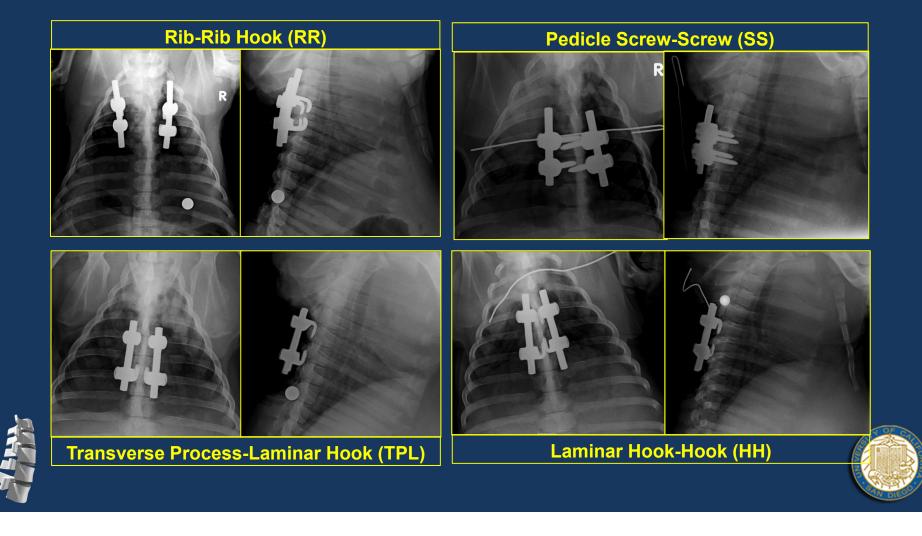
Disclosures

Behrooz A. Akbarnia, MD	(a,b) DePuy Spine; (a,b,c) Ellipse; (a,b) K2M; (a,b) KSpine
Muharrem Yazici, MD	(b) K2M, DePuy Spine
Burt Yaszay, MD	(a,b) K2M; (a,d) DePuy Spine; (a) KCI; (b) Synthes; (e) Orthopediatrics
Nima Kabirian, MD	None
Kevin R. Strauss, ME	(d) K2M Employee
Diana Glaser, PhD	(a) POSNA, DePuy, K2M, GSF, EOS Imaging, Naval Medical Center San Diego, Alphatec, KCI, SRS; (c) Nuvasive, MAKO, Mannkind, Alphatec

- a. Grants/Research Support
- b. Consultant
- c. Stock/Shareholder
- d. Speakers' Bureau e. Other Financial Support

Introduction

- The goals of <u>growth compatible</u> <u>surgery</u> in progressive EOS:
- 1. Control the deformity, 2. Allowing for continued spinal growth

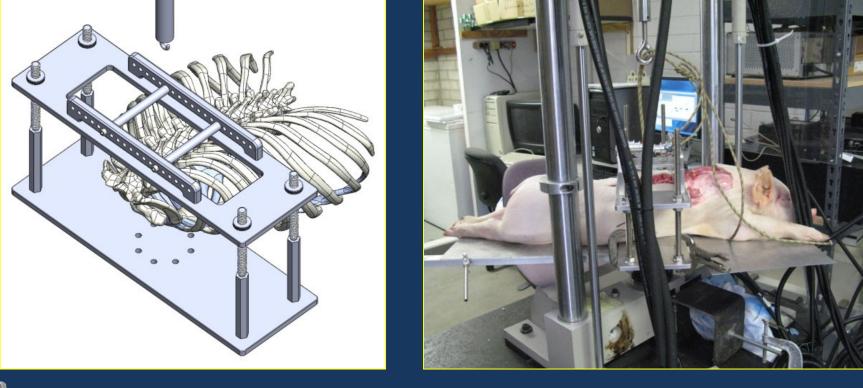

The foundation sites accept the major distraction forces and are subject to failure

• This study <u>compares</u> the strength of four different constructs under the same loading conditions in an in-vitro porcine model

Methods & Materials

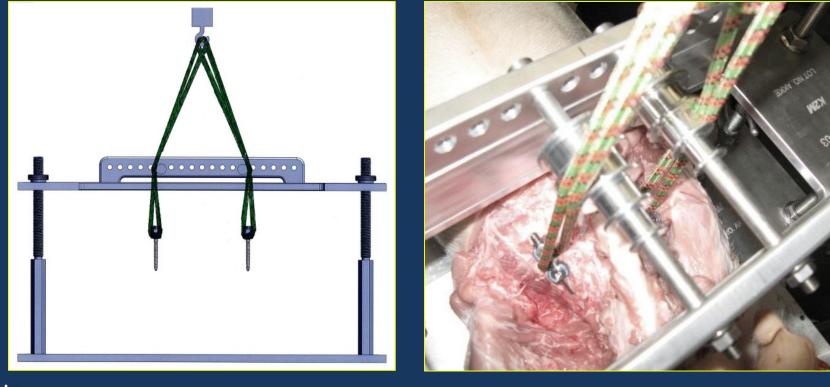
 Forty immature porcine specimens were instrumented randomly with one of four bilateral proximal anchors at T5-T6:

- 10 specimens with Pedicle Screw-Screw (SS)
- 10 specimens with Laminar Hook-Hook (HH)
- 10 specimens with Rib Hook-Hook (RR)
- 10 specimens with Transverse Process to Lamina Hook-Hook (TPL)
- The entire specimen including soft tissues and bony structures were kept intact except the soft tissues at the anchor sites.



Methods & Materials

• A unique fixture was designed to brace the specimen and provide a counter-force.

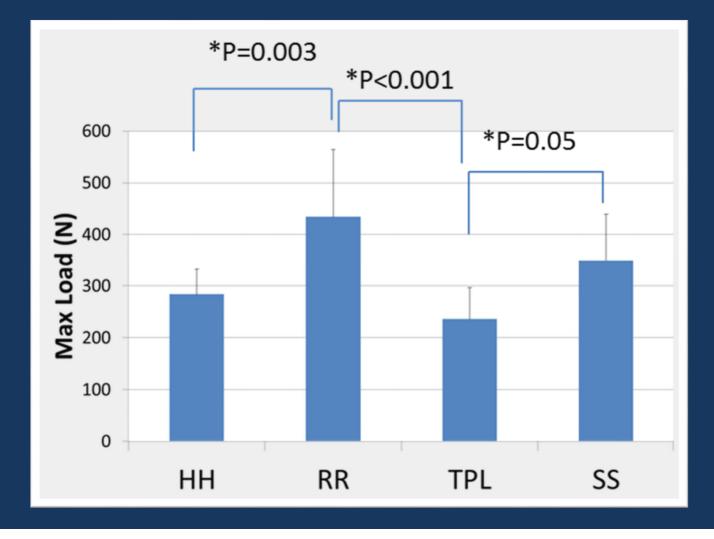


Methods & Materials

• The <u>ultimate load</u> was identified as the greatest load recorded for a construct failure

Results

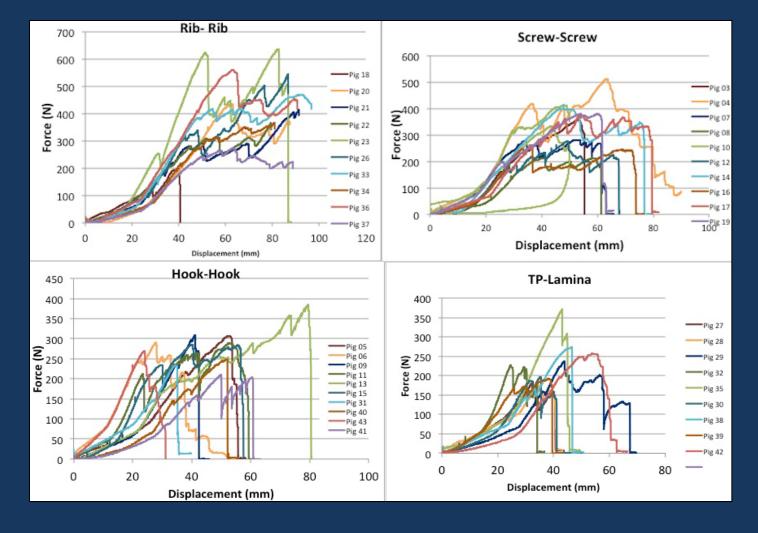
 All specimens eventually failed at the <u>bone-anchor interface</u>. No failures were observed in the instrumentation utilized.


Construct Type	Maximum load for failure (Mean & Standard Deviation)
(Screw-Screw) SS	$349\pm89~\text{N}$
(Laminar Hook-Hook) HH	$283\pm48~\text{N}$
(Rib Hook-Hook) RR	$429\pm133~\text{N}$
(Transverse Process-Laminar Hook- Hook) TPL	$236\pm60~\text{N}$

Young's Modulus was calculated for each construct type and no statistically significant difference was determined.

Results

 Maximum load to failure was <u>significantly different</u> in RR/HH, RR/TPL and SS/TPL construct pairs:



Results

• While RR and SS had the highest load to failure they had the most variable results too.

Conclusion

 Our study shows with posteriorly applied loads, Rib Hooks and Spine Screws failed at the <u>highest ultimate loads</u>; however, with <u>greatest variability</u> among the foundations tested.

 Spine Hooks and Transverse Process-Laminar Hooks had lower ultimate strengths but were less variable.

Significance

 Rib hooks may be considered as an alternative in upper foundation constructs in Growing Rod techniques.

