SEGMENTAL SELF GROWING ROD CONSTRUCTS IN THE MANAGEMENT OF EARLY ONSET NEUROMUSCULAR SCOLIOSIS

H Mehdian, B Boreham, T Hammett, J Clamp, N Quraishi

The Centre for Spinal Studies and Surgery, Queen's Medical Centre, Nottingham

SEGMENTAL SELF GROWING ROD CONSTRUCTS IN THE MANAGEMENT OF EARLY ONSET NEUROMUSCULAR SCOLIOSIS

Presenter: Hossein Mehdian No Relationships

■Co-Authors: Borham Ben No Relationships

Hammett Tim No Relationships

Clamp Jonathan No Relationships

Quraishi, Nas No R elationships

ICEOS Meeting November 15-16, 2012 Dublin, Ireland

Authors Disclosure Information

a. Grants/Research Support

b. Consultant

c. Stock/Shareholder

d. Speakers' Bureau

e. Other Financial Support

EARLY ONSET NEUROMUSCULAR SCOLIOSIS

- Children with neuromuscular disease frequently develop a progressive scoliosis and respiratory compromise
- Constriction of the chest cavity as a result of a spinal deformity restricts lung growth and will contribute to further pulmonary complications.

Lung development

Lung development up to the age 5 is important because:

- 20 million alveoli at birth but
- 300 million alveoli at the age of 5

Early growth disturbance compromises thoracic volume

EARLY ONSET NEUROMUSCULAR SCOLIOSIS

Various surgical techniques have been employed to correct EONMS

Limitations:

- Lack of segmental control
- Loss of sagittal balance
- Multiple surgeries
- High rate of complications

Definitive Self Growing Rod Constructs

- We have been using two different definitive growing rod constructs based on the Luque trolley.
- These constructs have enabled us to achieve and maintain the correction during spinal growth.

Sliding H Bar Screw + Wire Construct Construct

Early Onset Neuromuscular Scoliosis Self Growing Constructs

 This retrospective analysis involves 16 patients with EONMS treated between 1998-2010 with self growing constructs.

Objective:

 To evaluate the structural effectiveness, degree of correction, spinal growth and complications with these Constructs.

Self Growing Constructs in Early Onset Neuromuscular Scoliosis 1998-2010

Sex
16 pts (9 M, 7 F)

- Age 7.1 yrs (5-8 yrs)

Instrumentation T2-S1 (pelvic fixation)

Self Growing Constructs in Early Onset Neuromuscular Scoliosis

Hospital Stay7.6 days (6-10 days)

PICU Stay1.3 days (1-3 days)

Follow up
 3.2 yrs (24 mon-13 yrs)

Self Growing Rod Constructs in Early Onset Neuromuscular Scoliosis

Diagnosis

SMA Type 2

6 pts

SMA Type 3

4 pts

Hypotonia

2 pts

Cong M Dystrophy

3 pt

CP

1 pt

Self Growing Rod Constructs

Self Growing Rod Constructs (SMA)

Sliding H-Bar Construct

1997 1998 1999 2000

Age 7

Age 7

Age 8

Age 9

Age 10

2001 2002 2010 2010

Age 12

Age 20

Age 20

13 yrs: Post- op

12 cm: Spinal G

PJK: None

TK,LL:Preserved

operation:

Spinal growth (12cm)

Congenital muscular dystrophy

Congenital muscular dystrophy

Hypotonia

Spinal Growth

07.10.2009

19.03.2012

2½ years _____ 26.4 mm

22mm

Spinal Growth

52mm

15.09.2012

3 years \longrightarrow 30 mm

Spinal Growth

1997 2010

13 years —> 120 mm

Early Onset Neuromuscular Scoliosis Results

Scoliosis (pre-op)

68° (40°-92°)

Scoliosis (Post-op)

9° (0-35°)

Kyphosis (Pre-op)

62° (37°-90°)

Post-op Kyphosis

28° (20°-40°)

Early Onset Neuromuscular Scoliosis Results

Averaged vertebrae 13 levels (9-17)

Follow up 3.2 yrs (2-13 yrs)

Spinal Growth 40 mm (20 -120 mm)

Results

	Pre-op	Post-op	1 year F-up	2yrs F-up
FVC	64.6 %	83%	69%	63.2%
T1-S1 HEIGHT	25.07 cm	32.67 cm	34.92 cm	37.30 cm
Chest Width	21.32 cm	22.12 cm	22.47 cm	24.50 cm
Chest Cavity Space	98.66 cm2	116.68 cm2	154.33 cm2	172.40 cm2

Complications

Superficial Infection

1 patient

Loss of distal fixation

1 patient

Neurological complication

Conclusion

- The Segmental Self Growing Rod Construct is a powerful, definitive technique for the management of EONMS
- Excellent correction is achieved and maintained
- PJK is prevented
- Sagittal contour of the spine is preserved
- Maximum spinal growth and thoracic development is achieved with single surgery

EARLY ONSET NEUROMUSCULAR SCOLIOSIS

Various surgical techniques have been employed to correct EONMS

Limitations:

- Lack of segmental control
- Loss of sagittal balance
- Multiple surgeries
- High rate of complications

Spinal Growth

07.10.2009

19.03.2012

3 years -> 30 mm