Introduction of Shilla surgery into Japan A report on the first 22 patients

National Hospital Organization Kobe Medical Center

Teppei Suzuki, Koki Uno

Disclosure

Author Teppei suzuki Koki Uno

Relationships Disclosed No Relationship DePuy Spine (b)

(a) Grants/Research Support
(b) Consultant
(c) Stock/Shareholder
(d) Speakers' Bureau
(e) Other Financial Support

Introduction

EOS (Early-onset scoliosis) Severe deformity TIS (Thoracic insufficiently syndrome) Life threatening health risk

Campbell; JBJS, 2003

Davies; Arch Dis Child, 1971

Limited Fusion (Apical fusion, wedge resection, etc) Fusionless treatment Distraction based (Growth sparing) Growing Rod VEPTR Growth guidance Luque Stapling Shilla McCarthy; /CEOS, 2008

Purpose

R立位

Retrospetive case review of 24 consecutive children who had modified Shilla procedure at a single institution.

Objects

No. of patients	22
Gender (F:M)	13:9
Age at the initial surgery	8.5 ±2.3y.o.
Follow-up	3.1 ± 1.6 yrs

4 patients had definitive fusion

Objects Curve type Etiology Neuromuscular, Thoracolumbar, 4 **Double thoracic 1** Syndromic Double Majour, 1 Congenital, , 12 3 Single Thoracic, 17 Idiopathic 3 Larsen Other Marfan Sotos PWS

Modified Shilla procedure

Sliding screw Cephalad anchor or/and Extraperiosteal Sublaminar wire placement With HDPE cable 3-5vertebrae Apical With pedicle screw fusion With Ponte osteotomy Translation force Sliding screw Caudal anchor or/and **Extraperiosteal** Sublaminar wire placement With HDPE cable **HDPE: High-density polyethylene**

Measurement

Preinitial
Postinitial
Final f/u

Major Curve Kyphosis (T1-5 T5-12)

T1-S1 Length

SAL

Concave & Convex

Complications

Coronal parameter

Coronal parameter

Thoracic kyphosis

Length of elongation

The detail of the complications

	No.	Detail				
		Dislodgement	Cephalad	8		
18 Pts	30	Pull-out	Caudal	16		
(82%)	complications	Infection		3		
, , ,		Breakage		3		
9 Pts 16		Cephalad anchor		5		Ĩ
(41%) Unplant surgeri	Unplanned surgeries	Caudal anchor		11		
Almost all unplanned surgeries consisted of partial removal of implant prominence.						

Implant prominence

Definitive Fusion

Pre-initial

Drastic correction of lumbar curve is possible at the definitive surgery.

None of the **4** cases showed autofusion in fusionless area. Pre-final

座位

Post-final

sliding

Post-initial

z位

	Review							
Our study		No of cases	Complication rate	No. of additional surg. / Pts				
	Shilla	22	82 %	0.8 ±1 / 4year				
Akbarnia,et	t al.; <i>Spine</i>	2008						
Growi	ng rod	140	58 %	Repetitive scheduled surgerie				
Watanabe,	et al.; <i>Spir</i>	ne 2013		8 / 4year				
Growi	ng rod	88	57 %					
Emans,et	al.; <i>Spine</i>	2005						
	/EPTR	31	55%					
Potentially	negative	psychological o	consequences from	repeated surgical intervention				

Akbarnia, et al.; JBJS 2010

Growth?

立位

Inadequate sliding (caudal concave side)

Back out caudal anchor

Deteriorated lumbar curve and coronal balance

Growth?

座位

sliding

z位

Correction loss UT 10% MT 20% L 40%

Upper thoracic curve was preserved

Apical fusion

The correction of the upper thoracic and apex curve was maintained.

Conclusion

- Retrospective case review of 22 consecutive children who had the modified Shilla procedure at a single institution.
- The Shilla technique reduced the number of total surgeries.
- The inadequate sliding of the caudal anchor may cause temporary deterioration of lumbar curve
- The Shilla construct could maintain the correction of the curve at the apex.

