
# Use of and 3D asymmetrical (GOSS)Brace for infantile and juvenile

### scoliosis - Early results and failures



J. Michael Wattenbarger, MD, Amy Street, CPO

#### Orth Carolina PEDIATRIC DEPARTMENT

# Background

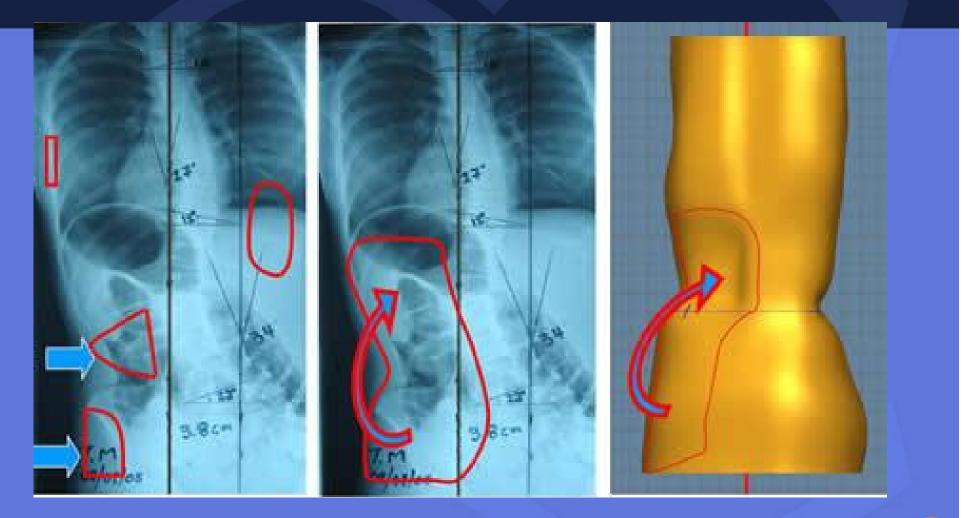
- Options for Infantile and Juvenile scoliosis
  - Casting
  - Growing Rods/VEPTR
  - Shilla
  - Bracing
- Casting
  - Labor intensive, expensive
  - Multiple visits to OR and anesthetics
- VEPTR/Growing Rod
  - Diminishing returns with multiple lengthenings
  - Multiple visits to OR and anesthetics



## **Materials and Methods**

- All patients treated by a single surgeon and orthotist since 2010 with an asymmetrical brace as primary treatment for infantile and juvenile scoliosis
- Groups
  - Infantile: <=3 yo (5pts)
  - Juvenile: >3 <10 yo (6 pts)</p>




# GOSS Brace

#### • GOSS

- 3D Bracing system based on restoring sagital balance, derotating the segments of the spine and then coronal bending moments.
  - Similar concepts to Mehta casting
- Orthotists takes 25 measurements from patients
- These measurements as well as x-ray, and clinical data are used to create a cad cam file
- The brace is then made from cad cam design emphasizing derotation and restoration of balance



# **GOSS System**



#### 3 point of Forces

#### 3D moments including derotation

PEDIATRICS

# Infantile group - Frapuce/estrophy

|   |         |                     |                | Pre Brace |      | In Brace |      |             |
|---|---------|---------------------|----------------|-----------|------|----------|------|-------------|
| A | ge (mo) | Phenotype*          | # of<br>braces | f/u (mo)  | Cobb | RVAD     | Cobb | Curent cobb |
| 1 | 13      | slender             | 5              | 34        | 47   | 44       | 29   | 60          |
| 2 | 33      | sturdy              | 3              | 35        | 40   | 16       | 24   | 35          |
| 3 | 11      | unknown<br>syndrome | 3              | 17        | 48   | 41       | 29   | 58          |
| 4 | 26      | syndromic           | 3              | 28        | 44   | 18       | 23   | 28          |
| 5 | 25      | unknown<br>syndrome | 4              | 32        | 30   | 13       | 30   | 100         |

\* After Mehta 5,6



# Juvenile Group – Improved Cobb


| Age (mo)    |                                            |             |                  | Pre Brace | In Brace<br>Cobb | Current<br>Cobb |  |
|-------------|--------------------------------------------|-------------|------------------|-----------|------------------|-----------------|--|
| t 1st Brace |                                            | # of braces | time in<br>brace | Cobb      |                  |                 |  |
| 75          | idiopathic                                 | 2           | 11 mo            | 42        | 20               | 46              |  |
| 47          | idiopathic                                 | 4           | 2 yr 10 mo       | 56        | 18               | 55              |  |
| 89          | Neuromuscular                              | 1           | 9 mo             | 47        | 37               | 55              |  |
| 50          | idiopathic previously treated with casting | 4           | 3 yr 4 mo        | 18        | 0                | 3               |  |
| 64          | Neurmuscular                               | 4           | 3 yr 6 mo        | 41        | 7                | 34              |  |
| 89          | idiopathic                                 | 2           | 1 yr 6 mo        | 55        | 21               | 37              |  |



# OM Coronal Aligment / Balance



### OM X- rays Vs Aligment / balance



2010 -33 mo Cobb - 40

2013 - cobb -35



## **Results/Observations**

#### Infantile group

- 2 with improved Cobb angle
- 2 patients with progression but no surgical intervention
- 1 surgical intervention (stiff curve with no initial improvement in brace)
- Juvenile group
  - 3/6 with improved Cobb
  - 3/6 Cobb stable (within measurement error)
  - No surgical intervention



## Discussion

- Overall results of infantile group promising as a delay tactic although a smaller percentage of patients with improved Cobb as previous studies<sup>7</sup>
- Juvenile group
  - Encouraging results with several patients treated for 3 years with no progression
- We believe viable option for treatment of infantile and juvenile scoliosis



## References

1. Cottalorda, J., et al., *Orthoses for mild scoliosis: a prospective study comparing traditional plaster mold manufacturing with fast, noncontact, 3-dimensional acquisition.* Spine (Phila Pa 1976), 2005. **30**(4): p. 399-405.

2. D'Astous, J.L. and J.O. Sanders, *Casting and traction treatment methods for scoliosis.* Orthop Clin North Am, 2007. **38**(4): p. 477-84, v.

3. Fletcher, N.D., et al., *Serial Casting as a Delay Tactic in the Treatment of Moderate-to-Severe Early-onset Scoliosis.* Journal of Pediatric Orthopaedics, 2012. **32**(7): p. 664-671 10.1097/BPO.0b013e31824bdb55.

4. Gomez, J.M. *Personal communication October 2013.* 

5. Mehta, M.H., *The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis.* J Bone Joint Surg Br, 1972. **54**(2): p. 230-43.

6. Mehta, M.H., *Growth as a corrective force in the early treatment of progressive infantile scoliosis.* J Bone Joint Surg Br, 2005. **87**(9): p. 1237-47.

7.Sanders, J.O., et al., *Derotational casting for progressive infantile scoliosis.* J Pediatr Orthop, 2009. **29**(6): p. 581-7.

