ICEOS 2015

David W. Polly, Jr., MD President SRS 2015-2016

Where is the Excitement in SRS Today

- Ends of the spectrum of live
 - Aging spine with reconstruction and realignment
 - Early onset

EOS

- My personal experience
 - Taught growing rods in fellowship
 - Experience with EOS case in arthrogryposis
 - Had Rick McCarthy come to Walter Reed to do cosurgery
 - Significant efforts and follow-up
 - Shriners Twin Cities
 - Lots of learning opportunities

What Are Important Outcomes Goals

- Improved thoracic volume
- Improved lung function
- Improved spinal height
- 'Normal life'

Bob Campbell

- Modern day 'Dogged Persistence'
- Rib synostosis
- Interaction with FDA
- Challenge of HDE
 approval

Development of Classification Systems

- Want to compare like to like
- Mike Vitale significant work

ICEOS Moves from Anecdote to Data

- That is when I felt that this meeting had arrived as a meaningful event
- Study groups co-operating by agreeing on same data fields

Challenges Today

- Technically we are able to improve spinal alignment BUT
- We stiffen the chest wall
 - Greg Redding challenges us as an honest broker
- Are we making a difference????

MANY many contributors Special thanks to Charlie Ledonio, MD

Radiographs from case

After Pectus Reconstruction

Initial Breakthrough

- David Nuckley showed us how to use a software program to morph a standard thoracic spine and chest to match patient specific x-rays
- Then using a different program we could calculate the volume within the distorted model
- This allowed before and after surgery comparison

Methods

- Scoliosis films (AP and Lateral) were utilized to deform an existing thorax model to produce a patient specific thorax model and then measure the mediastinal volume.
- Blender 2.63a[™] software used to construct computational model of the spine and thorax and perform deformation

The initial model is placed in a virtual x-ray where calibrated patient x-rays are placed orthogonal within the space. An x-ray projection of the 3D torso is overlayed on the x-rays and the bones are then deformed to match the x-rays.

The deformed spine and ribs are projected in the virtual x-ray to evaluate how well they match the patient films.

After deforming the spine and ribs and altering their orientation, the thoracic volume was computed above the diaphragm.

Model Validation

- Model development with 4 healthy adult CTs of the thorax.
- Tested on 4 cases (2 pectus and 2 scoliosis)

Figure A. Scoliosis

Figure B. Pectus Excavatum

Results

- Both scoliosis (Figure A.) and pectus excavatum (Figure B.) display thoracic volume decrease.
- The volumes measured for the scoliosis cases were 60.9 cm³ different (4%) between CT and chest X-rays.
- The pectus patients had a much higher volume, but remained fidelic within 4%.

Figure A. Scoliosis

Figure B. Pectus Excavatum

Clinical Case Series

- We have been participants in a large multicenter study of adolescent idiopathic scoliosis (PPSS)
- A previous study looked at the pre-operative and post-operative lung function before and 2 years after surgery in these patients
- We took the same cohorts and modeled them before and after surgery

Thoracic Volume Predicts Pulmonary Function Recovery in Scoliosis Patients

Charles Ledonio, MD¹, David Polly Jr. MD¹, Benjamin Rosenstein², Charles Johnston, MD³, and David J Nuckley, PhD²

¹Department of Orthopaedic Surgery and ²Department of Physical Medicine and Rehabilitation; University of Minnesota, Minneapolis, MN. ³Texas Scottish Rite Hospital for Children, Dallas, TX.

Objective

The objective of this research was to define the relationship between pulmonary function and the thoracic volume for adolescents before and after AIS deformity correction.

Methods

- <u>Study Design</u>. Retrospective case control correlational analysis of pulmonary function test (PFT) data and modeling reconstructions of thoracic volumes from plain x-rays.
- AIS patients from a multicenter database (PPSS) were sorted by presurgery PFT as a % predicted value.
- 10 patients with the highest and 10 with the lowest PFT values were analyzed.
- Thoracic volume was modeled and correlated with PFT values before and after surgery (2 year follow-up)

Results

Pulmonary Function

Thoracic Volume

† p=0.065; * p<0.001

Correlation of PFTs with Volume

AIS Patients with the Pre-Surgical Lowest PFT Values

Conclusion

- Pre-operative thoracic volume was diminished in patients with the lowest PFT values (3194±1358 cm³) compared with with the highest PFT values (3427±874 cm³) although the groups were not height matched (p=0.085).
- The adolescents with the most severe pulmonary compromise prior to surgery exhibited a strong positive relationship between post-operative change in PFT and thoracic volume (r² = 0.839; p<0.001).
- The mean increase in thoracic volume (space available to the lungs) in this group was 373.1 cm³ (11.7%) which corresponded to a 21.2% improvement in PFTs.
- AIS surgical intervention was found to increase thoracic volume which was strongly correlated with improved pulmonary function in severe cases.

Theoretical Volume Modeling

 We had the idea to progressively vary the amount(severity) of the deformity and look at the effect on thoracic volume

Clinical Series of Increasing Severity

- From the previously mentioned study group data set, we identified progressively severe deformity (50,60,70,80, and 90 degree curves)
- These were then modeled pre- and postoperatively

Thoracic Volume Modeling in Adolescent Idiopathic Scoliosis: The Effect of Increasing Cobb Angle and Sagittal Contour on Pulmonary Function

*Jennifer Wozniczka, MD*¹, David Polly Jr. MD¹, Charles Ledonio, MD¹, Benjamin Rosenstein², and David J Nuckley, PhD² ¹Department of Orthopaedic Surgery and ²Department of Physical Medicine and Rehabilitation; University of Minnesota, Minneapolis, MN.

Results: Cobb angle, sagittal contour and thoracic volume

MT Cobb	Sagittal profile T5- T12	Volume (mm3)
50	15	1861.989
60	19	1262.535
71	33	1538.234
80	34	1421.105

MT Cobb	Sagittal profile T5- T12	Volume (mm3)
50	0	1858.01
60	2	1538.22
71	4	1482.96
86	8	1604.48
96	9	1595.71

Neutral Sagittal Contour

Hypokyphotic Sagittal Contour

Results

- Moderate inverse correlation between Cobb angle and thoracic volume in samples with neutral sagittal contour (r = -0.629)
- Weak inverse correlation in the samples with hypokyphotic sagittal contour (*r* = -0.458)
- A weak inverse correlation was also noted between the sagittal angle and thoracic volume in the neutral and hypokyphotic groups (r = -0.490, r = -0.436)

Conclusions

- Despite a small sample size, a weak to moderate inverse correlation between Cobb angle and thoracic volume was observed in samples with hypokyphotic and neutral sagittal contour respectively
- Additionally, a weak inverse correlation was also noted between the sagittal angle and thoracic volume in the neutral and hypokyphotic groups
- This provides pilot data suggesting the expected correlations

Additional Work

- The thoracic model was developed to mimic a standard adult
- Young children have different geometric chest configurations
- Kristin England has now done validation of accuracy in 3 cases of children with x-rays and CT scans

					R lung vol-	L lung vol-	Mediastinum	Calculated thoracic	Predicted thoracic volume	Percent	Cobb	Thoracic Kyphosis (T2-T12)
Subject #	Age	Sex	Height (cm)	Weight (kg)	calc (cc)	calc (cc)	calc (cc)	volume (cc)	(mm3)	error (%)	Angle (°)	(°)
1	5y 7mo	F	89	12.2	314.8	244	206	764.8	751.9	1.6	74	60
2	4y 10mo	F	103	16.9	198.3	100	246	544	500	8.3	92	90
3	2y 10mo	М	84.1	9.9	247.1	115.6	179	542	530	2.2	76	61

<u>Results:</u> One male and two female patients with EOS and an average age of 4 years (range 2y 10mo- 5y 7mo). Demographic data and calculated volumes are summarized in Table 1. Subject 1 had 1.6% error, subject 2 8.3% error, and subject 3 2.2% error. This averaged to 4% error.

176.2

165.2

Coronal t1-t12 length

T2-T5 degree

T5-T12 degree

Maximum kyphosis (global kyphosis)

Computed thoracic volumes in an EOS patient with growing rod serial lengthening

Thoracic Volume Modeling in Early Onset Scoliosis

David Matson, MS2¹; Charles Ledonio, MD²; David Polly Jr., MD²; Kristin England, MD²; Jeff Pawelek, BS⁴; and Behrooz Akbarnia, MD^{3,4}

¹University of Minnesota Medical School; Minneapolis, MN. ²Department of Orthopaedic Surgery, University of Minnesota Medical School; Minneapolis, MN. ³Department of Orthopaedic Surgery, University of California, San Diego; San Diego, CA. ⁴San Diego Center for Spinal Disorders; La Jolla, CA.

Purpose

• Objective: to assess thoracic volume change with growing rod interventions in patients with early onset scoliosis.

Methods

- Retrospective case study of children 10 years of age and younger with diagnosis of EOS
- Convenience sample of 6 patients with EOS from Growing Spine Study Group
- Coronal and sagittal radiographs used to model thoracic volume

Methods

- Patients all underwent growing rod surgery with varying number of lengthening procedures for treatment of diagnosed early onset scoliosis
- Blender software (2.71, open access) to create 3D model from coronal and sagittal radiographs
 - 'computationally deformed' to match chest X-rays
- 3D models created with pre- and post-operative radiographs
 - Post-op taken from midpoint of treatment and final lengthening
 - Up to 3 models per patient
- Thoracic volume determined from models in Blender

Percent change in thoracic volume with growing rod treatment in EOS

Correlational Findings: Thoracic Volume

- Strong correlation with T1-T12 thoracic height (*r* = 0.85, 95% CI: 0.94, 0.62)
- Moderate inverse correlation with Cobb angle (r = -0.59, 95% CI: -0.84, -0.16)
- Moderate inverse correlation with kyphosis (r = -0.53, 95% CI: -0.81,-0.07)
- All correlations statistically significant (p<0.05)</p>

Conclusion

- Growing rod technique effectively increases thoracic volume with subsequent lengthenings
- Increased thoracic space for lung expansion during child growth
- Changes in thoracic volume correlate significantly with other markers such as thoracic height, Cobb angle, and kyphosis

3D Rendering of the Thoracic Cage from Plain 2D Radiographs of Scoliosis in Children

Charles T. Ledonio, MD Po-Chih Lee, PhD student Evan F. Bollig, PhD Scott Haiden Arthur Erdman, PhD David W. Polly, Jr., MD Nancy Rowe

Methods (6-8 hours)

Wedging Deformity in Vertebral Body

Hope for the Future?

- Define how patient specific deformity is expected to behave
- Compare intervention strategies
- Rigorous critique of outcomes
- Analysis of risks and complications associated with growth guidance strategies

Challenges

- Regulatory approval
- Payer approval
- Minimizing intervention morbidity
- Funding for quality work

Excitement Remains

- We are so much further ahead
- There is so much more to do
- Collaboration around the world is accelerating our understanding
- We want the right intervention for the right patient at the right time- that's all
- What will the next 50 years bring?

Behrooz A. Akbarnia Muharrem Yazici George H. Thompson *Editors*

The Growing Spine

Management of Spinal Disorders in Young Children

Second Edition

