

Université **m** de Montréal

Imaging with EOS, how does 3D help us with early onset deformity outcomes

Stefan Parent, MD, PhD

Academic Pediatric Spinal Deformity
Chair of CHU Ste-Justine

© CHU Sainte-Justine

Disclosures

- Depuy Synthes spine (a, b),
- Canadian Institutes of Health Research (a),
- Scoliosis Research Society (a),
- POSNA Biomet Spine Research Grant (a),
- Natural Sciences and Engineering Research Council of Canada (a),
- Orthopedic Research and Education Foundation (a), Setting Scoliosis Straight Foundation (a),
- Medtronic (b),
- EOS-Imaging (a, b, d, e) and Royalties
- Spinologics (c)
- (a) Grants/Research Support
- (b) Consultant
- (c) Stock/Shareholder
- (d) Speakers'Bureau
- (e) Other Financial Support

Introduction

First Visit

- Prediction of scoliosis progression remains challenging in patients with spinal deformities
- Even more difficult in Early Onset Scoliosis (EOS)
 - Different pathologies
 - Significant growth remaining

CONSEQUENCES

- Multiple clinical visits
- Serial radiographs
- Psychological stress
- Difficult to determine which patients will need interventions (and what type of intervention)

Introduction

Known Predictive factors for curve progression

- Type of curve
- Age
- Maturity
- Severity of deformity at presentation
- These are classical factors for AIS
 - EOS is more complicated

Congenital Scoliosis

- The problem is asymmetric growth
- They can become very severe.
- Two basic types failures of formation or segmentation
- Progression is based on the type of deformity

Idiopathic EOS- Separating Resolving from Progressive

- We have 3 Criteria:
- Curve Progression
- RVAD or RVAD Progression
- Rib Phase

Illustrative case

Idiopathic EOS

- 8 years old boy
- Otherwise healthy
- Referred for treatment
- Neuro exam normal

1/3/00

5/14/01

10/22/01

2/4/02

2/10/03

Why 3D?

3D reconstructions with EOS system

Why is EOS™ so different

- Only method to acquire simultaneous radiographs
- Calibrated environment
 - Possible to know exactly where the patient is in space
- Rapid 3D reconstruction
- 3D parameters calculated specifically for each patient

How can we use this information?

- Every patient is different
- Every patient's anatomy is unique
- Specific 3D parameters may have an impact on progression of the deformity
 - Some spines may be inherently more stable
 - Some spines may be more prone to progression

© CHU Sainte-Justine

Prospective model - Methods

- Prospective cohort Single center
- Statistical model
- Outcome: Final deformity at the end of growth
- Complete model:
 - 3D spine parameters as predictors
 - Skeletal maturity
 - Type of curve
 - Initial Cobb angle

Predictive model

- Predictive model includes:
 - Skeletal maturity system
 - Type of curvature
 - Initial deformity severity
 - Angle of the plane of maximal curvature
 - 3D wedging of two specific disk levels
 - Apical intervertebral rotation
- $R^2 = 0.702$

— 3D

Plane of Maximal deformity

Apical Vertebral Rotation

Peri-apical disk wedging

R

25

What about linear measurements?

Spine Deformity 4 (2016) 331-337

Case Series

Sagittal Spine Length Measurement: A Novel Technique to Assess Growth of the Spine

Alan J. Spurway, PEng, MSc*, Chukwudi K. Chukwunyerenwa, MD, MCh, FRCS (C)¹, Waleed E. Kishta, MD, PhD, FRCS (C)², Jennifer K. Hurry, MSc, Ron El-Hawary, MD, MSc, FRCS (C)

Orthopaedics Department, IWK Health Centre, 5980 University Ave, Halifax, Nova Scotia, B3K6R8, Canada Received 7 August 2015; revised 22 December 2015; accepted 11 March 2016

Sagittal Spine length

Spine Deformity 4 (2016) 331-337

Case Series

Sagittal Spine Length Measurement: A Novel Technique to Assess Growth of the Spine

Alan J. Spurway, PEng, MSc*, Chukwudi K. Chukwunyerenwa, MD, MCh, FRCS (C)¹, Waleed E. Kishta, MD, PhD, FRCS (C)², Jennifer K. Hurry, MSc, Ron El-Hawary, MD, MSc, FRCS (C)

Orthopaedics Department, IWK Health Centre, 5980 University Ave, Halifax, Nova Scotia, B3K6R8, Canada Received 7 August 2015; revised 22 December 2015; accepted 11 March 2016

- Spine length measured on PA radiographs does not take into account sagittal deformity
- The greater the kyphosis, the less reliable the spine length is
- How about in 3D?

Spinal Growth In Normal Children Between 3 And 11 Years Old Using 3D Reconstruction: A Longitudinal Study

Université m

Leonie Tremblay, Patrick Tohmé, Marjolaine Roy-Beaudry, Marie Beauséjour, Hubert Labelle, Stefan Parent. CHU Sainte-Justine, Montreal, Canada

Study Objectives

- A) To measure reference values for:
- Total spinal height
- Vertebral dimension
- Kyphosis
- Lordosis

3D Visualisation

B) To calculate growth rate per month for the age categories

METHODS

- All asymptomatic patients with a curve of less than 10° and more than one visit were identified,
- Absence of pathology with spinal growth influence
- PA and LAT calibrated radiographies were used for 3D reconstruction of the spine, using IdefX.
- Values for total height, vertebral dimension, vertebral growth, kyphosis and lordosis were calculated.

3D Height

- 3D evaluation allows calculation of spinal heights from different perspectives: posterior, middle or anterior side of the spine.
- Spinal heights increase as the child ages.

What is the significance of RVAD?

Spine Deformity 1 (2013) 259-265

Case Series

Physical Significance of the Rib Vertebra Angle Difference and Its 3-Dimensional Counterpart in Early-Onset Scoliosis

Genevieve Foley^a, Carl-Eric Aubin, PhD, PEng^{a,b,*}, Stefan Parent, MD, PhD^b, Hubert Labelle, MD^b, Jacques d'Astous, MD^d, Charles Johnston, MD^e, James Sanders, MD^c

Spine Deformity 1 (2013) 259-265

Case Series

Physical Significance of the Rib Vertebra Angle Difference and Its 3-Dimensional Counterpart in Early-Onset Scoliosis

Genevieve Foley^a, Carl-Eric Aubin, PhD, PEng^{a,b,*}, Stefan Parent, MD, PhD^b, Hubert Labelle, MD^b, Jacques d'Astous, MD^d, Charles Johnston, MD^e, James Sanders, MD^c

3D : all angles of a cube = 90 °

2D Projection of 3D angles

2D : angles vary according to the position of the observer

Patient data

■ 42 Early Onset Scoliosis patients (26 females, 16 males)

■ Age: 5.4 ± 2.3 years

■ Cobb : 43.3° ± 19.9°

■ 18 Phase I, 24 Phase II

Sites	# of Patients
CHU Sainte-Justine (QC)	27
University of Rochester (NY)	5
Texas Scottish Rite Hospital (TX)	5
Shriners Hospitals for Children (UT)	5

3D Reconstruction

Measurement methods

- ■From T4-T10:
 - RVAD (measured on PA radiograph, Mehta's method)
 - « True » RVAD3D: Computed in 3D

Measurement methods (cont'd)

- Axial vertebral rotation (Stokes' method)
- Local RVAD
 - Measured in the local plane of the vertebra (similarly to Stagnara's plan d'election) using the 3D reconstruction

Results

	Apex level		Maximum	
	RVAD	RVAD 3D	RVAD	RVAD 3D
Phase I	12 ± 9°	2 ± 12°	38 ± 24 °	29 ± 15°
Phase II	22 ± 19°	7 ± 22°	61 ± 39°	40 ± 16°

- RVAD varies depending of the measurement technique, but are correlated
- Phase II > Phase I
- The RVAD not associated w/ spinal axial rotation at apex, but correlated at max. level

Discussion and Conclusion

- RVAD is a projection of 3D geometry of chest wall/spine
 - Not true representation of 3D nature of deformity
 - Compound of factors: Projection, axial rotation, chest wall/spine asymmetry
 - RVAD is really a spine to rib (chest wall) measure and not a rotation measure
 - Challenge to measure on deformed/curved ribs

True deformation of rib cage in relation to spine

Summary

- Predicting outcomes in EOS = challenge
- Current knowledge mostly based on 2D information
 - RVAD, Cobb Angle, type of deformity
- This is a true 3D deformity
- Probably best evaluated in 3D but still needs work to determine which parameters can be used in prediction

Acknowledgements

Mother and Child University Hospital Center

