Os Odontoideum

Ilkka Helenius, MD, PhD
Professor and Chairman
Department of Pediatric Orthopedic Surgery
University of Turku and Turku University
Hospital, Finland

Os Odontoideum

Os odontoideum

- Bone (os), tooth (odontoideum), latin (Giacomini, Gior R Acad Med Torino 1886)
- Lack of continuity between the odontoid process and the body of C2 (axis)
- An independent ossicle with smooth cortical margins separated from a shorthened axis
- Ossiculum terminale=non-union of secondary ossification center, not associated with C1/C2 instability

Clinical Presentation

- Neck or occipital pain most common presenting symptom
- Neurologic deficits: Brainstem or spinal cord compression
- Incidental finding

Two main anatomical types

- Orthotopic: Ossicle associated with C1 anterior arch
- Dystopic: Ossicle migrated towards clivus, functionally fused to the basion

Idiopathic and associated with syndromes

- History of trauma common
- Down syndrome, skeletal dysplasia

Os odontoideum with C1/C2 instability

Ossiculum terminale

Radiographic findings

- Lack of continuity between the odontoid process and the body of C2 (axis)
 - An independent ossicle with smooth cortical margins separated from a shorthened axis
 - Enlarged anterior arch of C1
 - Jigsaw sign = articulation between anterior arch and the os
- Two main anatomical types (Fielding et al. JBJS 1980)
 - Orthotopic: Ossicle associated with C1 anterior arch
 - Dystopic: Ossicle associated or fused to the basion
- Atlantoaxial instability (C1/C2)
 - Atlantoaxial distance (AAD) ≥5 mm (Locke GR, AJR 1966;97:135-40)
 - Space available for cord (SAC) <13mm
 - Anterior, posterior or combined
 - Measured betweenposterior border of anterior arch (C1)
 vs. Posterior border of body of axis
- Canal encroachment
 - Bony
 - Reactive synovitis

Orthotopic

Dystopic

Reactive synovitis causing compression

Etiology

Embryology

- 4th occipital sclerotome (proatlas) → apical cap of dens and apical ligament
- 1st spinal sclerotome (C1) \rightarrow rest of dens
- 2nd spinal sclerotome (C2) → axis body & arches

- Fusion failure between the dens and body of atlas
- Skeletal dysplasias
- Associated with other congenital anomalies: 10% out of 279 (Zhao et al. Neurosurgery 2015)

Traumatic

- History of trauma common in os odontoideum:
 40% out of 279 (Zhao et al. Neurosurgery 2015)
- Etiology varies (Sankar et al. Spine 2006)
 - Some patients traumatic background others congenital

Arvin et al. Neurosurgery 2010

Chromosomal aberrations

- Down's syndrome (trisomy 21): 1:733 live births
 - Craniocervical instability: 8-63%
- Skeletal dysplasias
 - Spondyloepiphyseal dysplasia, OI
- CO/C1 instability (dysplasia), C1/C2 instability, os odontoideum
- Role of asymptomatic instability/screening unclear in patients with Down's syndrome
 - 40 catastrophic cord injuries reported Down's syndrome
 - No child had neurologic deficit, 3 adults showed minor neuro deficits (22q11.2 Deletion syndrome)

Spondyloepiphyseal dysplasia

Down sdr

Conservative treatment

- 20 patients treated conservatively (Spierings and Braakman JBJS Br 1982)
 - 15 patients without neurologic deficits, FU 6.5 years, none developed neurologic deficits
 - Including 8 patients with C1/C2 instability (>7mm)
 - 4 patients with transient cord signs, no deterioration

Minor trauma associated with

- Sudden death (Michaels et al JBJS 1969; Dempster et al. Am J Forensic Med 1990)
- Quadriplegia, serious neurologic deficits, worsening of neurology (Clements et al. Injury 1995; Choi et al Ped Radiology 2005; Klimo et al JNS 2008)
- Spinal cord atrophy (Fielding et al. JBJS 1980)
- Cerebellar infarction (Sasaki et al. Spine 2000)

Minimum requirements for conservative treatment

- Normal cord morphology
- Minimum SAC >13 mm
- 10% risk of myelopathy with SAC<13mm (Spiering and Braakman JBJS Br 1982)

Conservative treatment includes

- Stable, yearly flexion-extension radiographs
- MR images every 5 years to prevent signal changes
- No contact sports
- Requires further investigations!

Preoperative considerations

- C1/C2 instability
 - AAD>4 mm, SAC<13mm
 - 10% risk of myelopathy with SAC<13mm (Fieding JBJS Br 1982)
- C1-C2 vs. C0-C2 spinal fusion
 - Down patients with dysplastic CO/C1 joints?
- Preoperative imaging
 - MR angiography: Vertebral arteries
 - CT: Bifid C1 posterior elements
 - Use of intraoperative navigation
- Preoperative traction w/o halo vest (Eö-Barr et al. 2016)
- Fixation points
 - Occiput
 - C1 posterior elements, lateral mass
 - C2 posterior elements, pedicle
 - Transarticular screws

Dysplastic CO/C1 joints

Effect of preop traction on alignment (El-Barr et al. J Neurosurg Ped 2016)

Brooks-Jenkins wiring

- Brooks-Jenkins and Jenkins JBJS 1978
 - Flexion prevented by wiring
 - Extension prevented by bone graft
 - 3 children with os odontoideum achieved fusion with Minerva cast
- Requires normal arches of C1 and C2
- 11 children with os odontoideum (Smith et al. Spine 1991)
 - 18% non-union
 - 1 child with cord injury with sublaminar wire passage

Case of non-union

5-yr-old SED boy with os odontoideum AAD 9mm, SAC 8mm C1 laminectomy, C0-C2 with Codman cables. Symptomatic non-union

Transarticular screws

- 121 patients (9 with os odontoideum)
 operated using transarticular screws
 (Dickman and Sonntag Neurosurgery 1998)
 - 98% fusion rate
- 25% of children present with C2 anomaly preventing transarticular screw pathway, risk of vertebral artery injury in children 3% (2/67) (Gluf and Brockmayer. J Neurosurg Spine 2005).
- Requires alignment before screw insertion.
- Biomechanical stability of single transarticular screw & wiring almost the same as 2 TA screws (Naderi et al. Spine 1998)
- 38 Os odontoideum patients, mean age 39 years (Zhang et al. J Neurosurg 2015)
 - No vertebral artery lesions

Harms' technique

- C1 mass lateral & C2 pedicle screws (Melcher&Harms, Spine 2001)
- C2 nerve root can be sacrified, typically relatively thick venous plexus over C1 lateral mass
- In adults C1 pedicle screw (if lamina >4 mm) less bleeding, shorter OR time, less C2 irritation as compared with C1 lateral mass (RCT; Yan et al. BMC Musculoskel Dis 2016)
- 202 Os odontoideum patients fused using Harm's technique (Zhao et al. Neurosurgery 2015)
 - Mean age at surgery 38.6 years
 - Whole series of 279 pts included 9
 (3.2%) non-unions, 4 infections, 1 csf leak

Melcher and Harms, Spine 2001

Harms technique (C1 lateral mass, C2 pedicle)

Complications of wiring vs. rigid

28 children with skeletal dysplasia and C1/C2 instability
14 operated with non-rigid, 14 with rigid fixation (Helenius et al. JBJS 2015)

Non rigid

Digid

	Non-rigia	Rigid	
Any complication	9 (7)	1 (3)	p=0.031
Non-union	6	0	p=0.0057
CSF leak	1	1	
V. arterial bleed	0	2	
Autograft dislocated	1	0	

Preoperative halo traction for fixed ventra compression

Abd-El-Barr et al. J Neurosurg Ped 2016

Transoral release or decompression

- Transoral procedures decreased (Dlouhy et al. Neurosurg Focus 2015)
 - Traction, rigid internal fixation with distraction
- Transoral approach
 - In small children ability to open mouth may limit use
 - Release or odontoidectomy
 - Transnasal may carry less risks, but requires endoscopic approach (Level of decompression vs. Hard palatinum)
 - Extended transmadibular approach
- Dystopic subtype may increase the risk of irreducible C1/C2 dislocation
- 14% (38/279) required transoral release (Zhao et al. Neurosurgery 2015)
 - Age of the patients or type of Os Odontoideum needing anterior approach not reported

Zhao et al. Neurosurgery 2015

Outcomes of transoral decompression

- 280 children undergoing transoral approach (Menezes et al. Childs Nerv System 2008)
 - CSF leak or meningitis 0%
 - Wound dehiscence 0.7%
 - Velopharyngeal insufficiency 1.8%
- 411 transoral approaches (Choi and Crockhard, Neurosurgery 2013)
 - Wound infection 1.1%
 - Dysphagia 3.3%
 - CSF leak 1.1%
 - Velopharyngeal insufficiency 14% (associated with soft palate split)
- Endoscopic endonasal approach (Ponce-Gomez et al. Neurosurgery Focus 2014)
 - Less need for soft palate division, tongue and oropharyngeal swelling
 - May lead to earlier extubation and decreased risks of velopharyngeal insufficiency

Dlouhy et al. Neurosurg Focus 2015

Treatment algorithm

- Most children can be treated with posterior approach
- Preoperative traction with or without vest (Abd-El-Barr et al. J Neurosurg Ped 2016)
- Intraoperative traction trial
- Dystopic subtype may increase the risk of irreducible C1/C2 dislocation
- 14% (38/279) required transoral release (Zhao et al. Neurosurgery 2015)
 - Mostly adult patients?

Zhao et al. Neurosurgery 2015

Author's current practice

- Preoperative evaluation
 - MR: signal changes, cord morphology, anatomy of arteries (dominant vertebral artery?)
- Intraoperative traction
 - Halo + 1-2 kg traction
- Harms technique
 - C1 navigated + exposure of lateral mass (C2 sacrifice)
 - C2 pars/pedicle free hand
 - Intraoperative O-arm to confirm reduction, implant placement
 - Avoid C0/C1 fusion
- Halo body jacket 2-3 months
- Custom made collar 3 months
- Contact sports not allowed

5-yr-old girl, head tilt, neck pain

Intraoperative traction

Make sure cervical alignment is acceptable with fluoroscopy

Implant placement

Intraoperative O-arm

Implant placement
Space available for cord
Alignment of os odontoideum of axis, avoid over/undercorrection

Conclusions

- Role of conservative treatment unclear
- Indications for spinal fusion
- All posterior for children w/o preoperative / intraoptraction
- Indication and need for anterior release / decompression unclear in children
- Ongoing study on Os
 Odontoideum by the Pediatric
 Cervical Spine Study Group
 - Idiopathic vs. non-idiopathic children
 - Conservative treatment
 - Operative treatment

Interested in study?

Contact e-mail: ilkka.helenius@utu.fi
or jonathan.phillips@orlandohealth.com