

11th International Congress on Early Onset Scoliosis (ICEOS) November 16 & 17, 2017

Hotel Del Coronado • San Diego, CA, USA

11th International Congress on Early Onset Scoliosis (ICEOS) November 16-17, 2017

Use of 3D Technology in Assessment and Treatment of EOS

René M. Castelein, MD PhD Professor and Chair, Department of Orthopaedic Surgery University Medical Center Utrecht, Utrecht, The Netherlands r.m.castelein@umcutrecht.nl

Disclosures

- K2M Research Grant
- AO Research Grant
- Alexandre Suermann MD-PhD stipend
- Fondation Yves Cotrel Grant 2006 and 2017

Outline:

- Example
- 3D in detail
- How to acquire 3D

Let's start with a cool example of 3D

February 2012 – February 2016

February 2012-February 2016

After 2nd operation: December 9th 2016

February 1st 2017: Lack of anterior support

Planning

3D printing

Postoperative June 2017

Postoperative June 2017

How new is 3D?

How new is 3D?

Die Mechanik der Skoliose.

Ein Beitrag zur Lehre von den Missgestaltungen des Knochengerüstes.

Von Prof. G. Hermann Meyer in Zürich.

THE BASIC ANATOMY OF SCOLIOSIS

ROBERT ROAF, LIVERPOOL, ENGLAND

Now: What about this Relative Anterior Overgrowth (RASO)?

Idiopathic Scoliosis

The Relation Between the Vertebral Canal and the Vertebral Bodies

Richard W. Porter, FRCS

• The results of this study are consistent with a conceivable hypothesis that in some patients with idiopathic scoliosis, there may be impaired growth in the length of the spinal cord.

Eur Spine J (2001) 10:473-481 DOI 10.1007/s005860100311

2000 Porter:

REVIEW

The pathogenesis of idiopathic scoliosis: uncoupled neuro-osseous growth?

Richard W. Porter

2001 Porter:

These observations do not establish that a short spinal cord will result in scoliosis, but the results are compatible with this hypothesis, and that impairment of spinal cord growth factors may sometimes be responsible for scoliosis.

+7.1%

1.0±2.7%

+11.2%

Thoracic lordosis

Disc versus vertebra: 'Anterior-overgrowth'

Main thoracic curve

+3,9% anterior overgrowth

Anterior-posterior length difference (ΔΑ-Ρ)

3-D deformity is most in the disc in all regions of the spine!

Anterior-posterior lenght difference (ΔA-P)

Anterior "overgrowth" specific for idiopathic scoliosis, or secondary to the scoliotic deformity?

Spine

2017

Anterior Spinal Overgrowth Is the Result of the Scoliotic Mechanism and Is Located in the Disc

Rob C. Brink, MD,^{*} Tom P.C. Schlösser, MD, PhD,^{*} Dino Colo, MD,^{*} Ludvig Vavruch, MD,[†] Marijn van Stralen, PhD,[‡] Koen L. Vincken, PhD,[§] Marcus Malmqvist, BSc,[†] Moyo C. Kruyt, MD, PhD,^{*} Hans Tropp, MD, PhD,[†] and René M. Castelein, MD, PhD^{*}

CT scans of:

Deformity

- 30 NM patients
- 30 AIS patients
- 30 Non-scoliotic controls

10-18 years of age

AIS

* 52° ±21°

NM

Thoracic lordosis in idiopathic and neuromuscular scoliosis

Congenital scoliosis?

Thoracic lordosis in idiopathic, neuromuscular and congenital scoliosis

Relative anterior lengthening or relative posterior shortening?

3D semi-automatic measurements (CT scans)

Absolute heights (mm): AIS (n=80) vs matched controls (n=30)

* = significant difference between AIS and controls.

- No discussion if RASO exists, all scoliosis are *lordotic* (not hypokyphotic)
- RASO is not a generalized phenomenon, it is restricted to the apex of the curve
- It is not active growth, it is passive expansion of the disc and compression of the interspinous space
- It is part of any scoliotic mechanism, idiopathic, neuromuscular, compensatory congenital
- It is not the *cause* of scoliosis, it is its *consequence*!

How to acquire 3D

- CT(gold standard)
- EOS
- Ultrasound

ORIGINAL ARTICLE

Application of Low-dose Stereoradiography in In Vivo Vertebral Morphologic Measurements: Comparison With Computed Tomography

Saba Pasha, PhD,* Tom Schlösser, MD, PhD,† Xiaowei Zhu, PhD,‡ Xochitl Mellor, BS,* René Castelein, MD, PhD,† and John Flynn, MD*

J Pediatr Orthop • Volume 00, Number 00, ■ ■ 2017

С Т

technique

Low dose stereoradiography

morphological variables

Brink et al. Scoliosis and Spinal Disorders (2017) 12:6 DOI 10.1186/s13013-017-0111-5

Scoliosis and Spinal Disorders

Open Access

CrossMark

RESEARCH

Upright, prone, and supine spinal morphology and alignment in adolescent idiopathic scoliosis

Rob C. Brink^{1*}, Dino Colo¹, Tom P. C. Schlösser¹, Koen L. Vincken², Marijn van Stralen³, Steve C. N. Hui⁴, Lin Shi⁵, Winnie C. W. Chu⁴, Jack C. Y. Cheng⁶ and René M. Castelein¹

Several valid and reliable ultrasound angles

ORIGINAL ARTICLE

Eur Spine J (2015)

Reliability and accuracy of ultrasound measurements with and without the aid of previous radiographs in adolescent

idiopathic scoliosis (AIS) Michelle Young · Douglas L. Hill · Rui Zheng · Edmond Lou

11.9° 21.5°

RESEARCH

Open Access

A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging Zheng *et al. Scoliosis and Spinal Disorders* (2016)

> NMA NUS

the lifetime solid cancer incidence increases at a rate of 1.4% and 2.4% for men and women, respectively.

Scolioscan Telefield Medical Imaging Ltd, Hong Kong

2000 transverse images Scan speed: 1 cm/sec

Raw images in 3-D space

2-D projection image

Methods – X-ray vs. Ultrasound

Manual SP angle

Automatic

Results

Excellent linear correlations (validity)

Good to excellent reliability

ICC

Conclusions

- Excellent correlations between ultrasound and X-ray
- High reliability
- No differences in reliability and validity between different ultrasound measurements

Scoliosis progression can be assessed without ionizing radiation

