

We Treat Kids Better

Which Osteotomy Should I use in Congenital Scoliosis?

> Lindsay Andras, MD landras@chla.usc.edu

Disclosures

Lindsay Andras, MD: Biomet (d), Eli Lilly (c), Journal of Pediatric Orthopedics (e), Medtronic (d), Orthobullets (f), Pediatric Orthopaedic Society of North America (e), Scoliosis Research Society (e)

- a. Grants/Research Support
- b. Consultant
- c. Stock/Shareholder
- d. Speakers' Bureau
- e. Editorial/Governing Board
- f. Other Financial Support

Background

Treatment of congenital spinal deformity

- 3 column osteotomies
 - hemivertebrectomy (HV)
 - vertebral column resection (VCR)
- Multiple Ponte osteotomies (PO)

Goal: To evaluate the outcomes of patients with congenital spinal deformity treated with PO vs. HV/VCR

Methods

Retrospective review of patients with congenital spinal deformity treated with posterior spinal fusion

Study period: 1996-2013

• Exclusion criteria:

- prior instrumentation
- isolated cervical deformity
- growing spine instrumentation
- < 2 year follow-up

49 patients met the inclusion criteria - 17 PO - 32 HV/VCR (26 HV; 6 VCR)

Deformity angular ratio (DAR) calculated for each patient (curve magnitude/# levels of deformity)

Lewis, Lenke, et al. Spine 2015

Coronal and Sagittal DAR was similar between groups

	PO (n=17)	HV/VCR (n=31)	P-value
Mean Age (years)	14	7	<0.0001
Mean Preoperative Cobb Angle (°)	65	54	0.031
Mean Preoperative Kyphosis (°)	60	53	0.30
Mean Coronal DAR	12	14	0.17
Mean Sagittal DAR	13	14	0.66
# of congenital anomalies	1.8	2.1	0.43

 More levels were fused in the PO group than HV/VCR group (11 levels vs 5 levels, p<0.001)

Amount of correction was the same between groups

.8
!1
'8
53
11
04

Results

Signal changes were significantly more frequent with VCR (p=0.001):

- 5.9% (1/17) in PO group
- 3.8% (1/26) in HV group

• 67% (4/6) in VCR group

- •VCR group: 2 neurologic deficits
 - 1 resolved by 2 weeks postoperatively
 - 1 had complete lower extremity paralysis

•PO group: 1 neurologic deficit

resolved after decompression and staged fusion

Results

we Treat Refturn to OR was higher in the HV/VCR group but was not significantly different (p=0.35)

Reasons for reoperation	PO (n=17)	HV/VCR (n=32)
Total	3 (17.6%)	12 (37.5%)
Decompensation below LIV	0	1
Proximal junctional kyphosis	1	1
Broken implants	0	3
Implant migration	0	3
CSF leak and wound dehiscence	0	1
Pseudarthrosis	0	2
Wound drainage	1	1
Implant prominence	1	0
Progression of scoliosis	0	2

TIMING IS EVERYTHING

Do you need to operate? When to wait...

• Asymptomatic

• Nonprogressive

• Slowly progressing and small (<3yo)

Evaluate progression

- Look back at many XR, compare side by side
- High inter and intra-rater variability in measuring congenital scoliosis

 Loder et al: intraobserver variability +/- 9.6 degrees
 interobserver variability +/-11.8 degrees
 true progression= >23 degree change
- Facanha-Filho, Winter et al, JBJS 2001:
 - if comparing XR side by side, an accuracy of
 +/-3 degrees can be expected 95% of the time

Do you need to operate? When to act...

• Progressive

- if slow try to postpone until at least 3-4yo

• Significant Stenosis

• Poor balance

Options in Congenital Scoliosis

• Ponte

Hemivertebrectomy

 Vertebral Column Resection

Multiple Ponte Osteotomies - no resection

Ponte Osteotomies

Approximately 10 degrees per level

Improves flexibility for derotation - 3 degrees per level (Sangiorgio et al Spine Def 2013)

- Older Children having longer fusions
- Revisions/ Prior fusion mass (esp growing rod/VEPTR conversions)

s/p guided growth With apical fusion At OSH with continued progression

Ponte Osteotomies

Approximately 10 degrees per level

Improves flexibility for derotation - 3 degrees per level (Sangiorgio et al Spine Def 2013)

- Older Children having longer fusions
- Revisions/ Prior fusion mass (esp growing rod/VEPTR conversions)

Posterior Osteotomies Previous Fusion

- Identify transverse processes
- Need Open discs
- Note which goes with which
 - Image to identify pedicles

Motion Essential confirm w/ Laminar Spreader

Transverse Process Intact

Mulitple Osteotomies

Hemivertebrectomy

Best for : Isolated hemivertebrae with focal deformity

- esp in small children
- try to postpone until 3 yo or older if not rapidly progressing

Template with 3D CT

- Evaluate pedicles above and below
- Often abnormality posteriorly doesn't mirror deformity anteriorly

Hemivertebrectomy

• Bone Scalpel

Hemivertebrectomy

Consider Hooks a 3rd rod to close osteotomy with hooks on ribs or lamina

Vertebral Column Resection

Rarely needed in young patients

• Highest neurologic risk

Consider other options
 halofemoral traction

Summary

Hemivertebrectomy

- Short focal deformity
- Younger children
- More Revisions

Ponte Osteotomies

- Longer segments
- Older Children
- More Derotation
- Fewer Implant Issues