The Effect of Traditional Single Growing Rod **Technique on Growth of Unsegmented Levels** 北京協和醫院 in Mixed Type Congenital Scoliosis

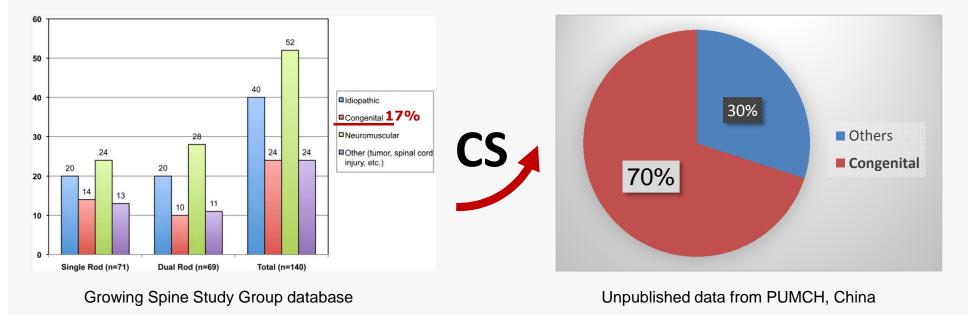
Tianhua Rong, MD; Jianxiong Shen, MD; Chong Chen, MD; Youxi Lin, MD; Haining Tan, MD; Zheng Li, MD, PhD; Yang Jiao, MBBS

Peking Union Medical College Hospital

Beijing, China

Nov. 22, 2019 ICEOS, Atlanta, US

PEKING UNION MEDICAL COLLEGE HOSPITAL


No Disclosure

Nov. 22, 2019 ICEOS, Atlanta, US

BACKGROUND

Significantly higher percentage of congenital EOS in Asian population

Bess S, Akbarnia BA, Thompson GH et al. J Bone Joint Surg Am. 2010 Nov 3;92(15):2533-43

BACKGROUND

Traditional single growing rod (SGR) in congenital scoliosis (CS)

Safety and Efficacy of Growing Rod Technique for Pediatric Congenital Spinal Deformities

Hazeem B. Elsebai, MD, Muharrem Yazici, MD, George H. Thompson, MD, John B. Emans, MD, David L. Skaggs, MD, Alvin H. Crawford, MD, Lawrence I. Karlin, MD, Richard E. McCarthy, MD, Connie Poe-Kochert, RN, Patricia Kostial, RN, and Behrooz A. Akbarnia

19 CS patients (12 single rod)

- > Cobb angle: $66^{\circ} \rightarrow 47^{\circ}$
- T1-S1 growth: 11.7 mm/year
- Complication: 42% (8/19)

Minimizing Complications With Single Submuscular Growing Rods

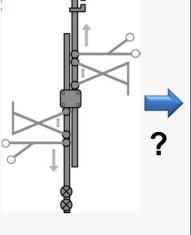
A Review of Technique and Results on 88 Patients With Minimum Two-Year Follow-up

18 CS patients treated with SGR

- ➢ Cobb angle: 70° → 44°
- T1-S1 growth: 8.4 mm/year
- Complication: 50% (9/18)

Elsebai HB, Yazici M, Thompson GH et al, J Pediatr Orthop. 2011 Jan-Feb;31(1):1-5 Farooq N, Garrido E, Altaf Fet al, Spine (Phila Pa 1976). 2010 Dec 1;35(25):2252-8

BACKGROUND


CS with segmentation failure

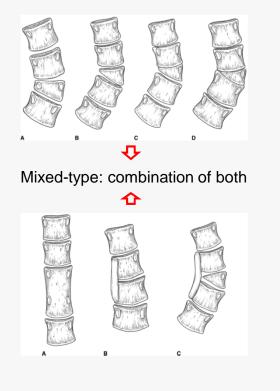
Literatues regarding on nature history of mixed type CS

- Limited or even no growth in unsegmented levels (USLs)
- Treatment options: shortening (osteotomy, fusion etc.)

Questions:

- Could the unsegmented spine be lengthened?
- How would SGR affect the spine growth in CS patients with extensive segmentation failure?

METHODS


Study Design

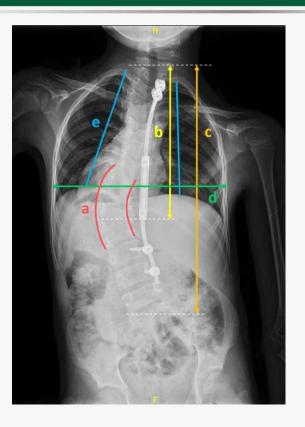
Retrospective, single-center, case series study

Included Criteria

Early-onset mixed-type congenital scoliosis (EOMTCS)

- Initially treated by SGR
- At least 4 USLs around apex
- At least 4 distractions and 3-year follow-up

Hedequist D and Emans J. J Am Acad Orthop Surg. 2004 Jul-Aug;12(4):266-75


METHODS

- Demographic and operative data
- Nutritional status: BMI, hemoglobin

Radiograph Measurement

- AP and L film (before implantation and at the latest follow-up)
- Length of concave and convex side of the USLs
- Thoracic parameters, all spine height and SAL

Mayer O, Campbell R, Cahill P, et al. Curr Probl Pediatr Adolesc Health Care. 2016 Mar;46(3):72-97

			D	emographic	c data of the	e 12 enrolled	patients	
Pt. No.	Age at index surgery (yr)	Sex	USLs	Unilateral bar	Fused ribs on concave side	Cobb angle of major curve (°)	Intraspinal anomalies	Additional comorbidities
1	7.6	F	T7-T11	T9-T10	No	78	SCM (Type I)	No
2	6.6	Μ	T8-T11	T8-T11	No	82	No	Congenital eventration of right diaphragm
3	3.4	F	T7-T11	T7-T11	T5-T6	104	No	Klippel-Feil syndrome, bicuspid aortic valve
4	6.9	F	T2-T8	No	T5-T8	90	No	No
5	10.7	М	T5-T11	T7-T10	T4-T8	106	SCM (Type I), tethered cord, syringomyelia	Thoracic insufficiency syndrome
6	4.5	М	T11-L1	No	No	100	No	No
7	7.0	F	Т6-Т9	Т8-Т9	Т6-Т7, Т8-Т9	81	SCM (Type I)	No
8	10.2	Μ	T3-T11	T8-T11	No	95	No	No
9	9.2	м	T3-T11	No	T4-T10	119	Syringomyelia, tethered cord	Thoracic insufficiency syndrome
10	12.3	F	T2-T11	No	T4-T9	104	SCM (Type II), tethered cord	Thoracic insufficiency syndrome
11	8.9	F	T8-L1	T9-L1	No	68	Syringomyelia	No
12	4.0	F	T1-T9	T4-T8	T5-T6	85	SCM (Type II), tethered cord	No
ALL	7.6±2.8	-	6.6±2.3	8/12	7/12	93±15	7/12	5/12

Pt. No., patient number; USLs, unsegmented levels; SCM, split cord malformation.

院

Operative data of the 12 enrolled patients

			Number of	Final	Creduction	IONM	Duration of		
Pt. No.	Previous surgery	Diameter of rod	Proximal anchor	Distal anchor	distractions	fusion	Graduation	alert*	follow-up (yr)
1	Anterior spinal release	5.5mm	T4 (H), T5 (H)	L4 (S)	4	Yes	Yes	No	5.7
2	Anterior epiphysiodesis	5.5mm	T3 (H), T4 (H)	L4 (S)	4	Yes	Yes	No	6.8
3	No	5.5mm	T2 (H), T3 (H)	L4 (S)	4	Yes	Yes	No	5.0
4	No	4.5mm	T1 (H), T11 (S)	T11 (S), L4 (S)	8	No	Yes	No	6.3
5	No	5.5mm	T2 (S) <i>,</i> T3 (S)	L3 (H), L4 (H)	7	Yes	Yes	No	4.1
6	No	4.5mm	T8 (S), T9 (S)	L3 (S), L4 (S)	8	No	No	No	6.9
7	No	5.5mm	T3 (S) <i>,</i> T4 (S)	T12 (S), L1 (S), L2 (S)	10	Yes	Yes	Yes	5.7
8	No	4.5mm	T2 (S), T3 (S)	L3 (S), L4 (S)	5	No	No	No	3.5
9	No	4.5mm	T2 (S)	L1 (S), L2 (S)	6	No	No	Yes	4.4
10	No	4.5mm	C7 (S), T1 (S)	L3 (S), L4 (S)	5	No	No	No	3.2
11	No	4.5mm	T2 (S), T3 (S)	L2 (S), L3 (S)	4	No	No	No	3.1
12	Osseous spur resection	4.5mm	C7 (S)	T12 (S), L1 (S)	4	No	No	No	3.0
ALL	3/12	-	-	-	5.8±2.1	5/12	6/12	2/12	4.8±1.5

Pt. No., patient number; IONM, intraoperative neuromonitoring; (H), lamina hook; (S), pedicle screw. *At index surgery.

Radiographic measurement of the concave and convex sides at the unsegmented levels

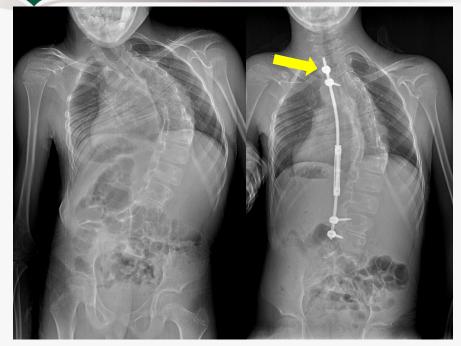
	Length	of <mark>concave</mark> si	de of ur	unsegmented levels (intervention group, mm)) Length of convex side of unsegmented levels (control group, mm)				
Pt. No.	Pacoling	Eollow up -	Total growth		Annual growth		Baseline Follow-up-		Total growth		Annual growth	
	Baseline Follov		Value	Percentage	Value	Percentage	baseline rollow-up		Value	Percentage	Value	Percentage
1	61	80	19	31.1	3.4	5.5	95	101	6	6.3	1.1	1.1
2	33	52	19	57.6	2.8	8.5	63	92	29	46.0	4.3	6.8
3	34	57	23	67.6	4.5	13.5	55	78	23	41.8	4.6	8.4
4	65	85	20	30.8	3.2	4.9	127	137	10	7.9	1.6	1.3
5	88	163	75	85.2	18.2	20.7	143	176	33	23.1	8.0	5.6
6	42	58	16	38.1	2.3	5.5	70	84	14	20.0	2.0	2.9
7	43	59	16	37.2	2.8	6.5	84	101	17	20.2	3.0	3.5
8	110	144	34	30.9	9.8	8.9	155	171	16	10.3	4.6	3.0
9	59	91	32	54.2	7.3	12.3	107	142	35	32.7	7.9	7.4
10	103	127	24	23.3	7.5	7.2	177	184	7	4.0	2.2	1.2
11	58	65	7	12.1	2.3	3.9	99	102	3	3.0	1.0	1.0
12	69	86	17	24.6	5.6	8.2	112	120	8	7.1	2.7	2.4
Mean	-	-	-	41.1±21.0*	-	8.8±4.7*	-	-	-	18.5±14.9*	-	3.7±2.7*

Pt. No., patient number; *The concave side had a significantly higher total and annual growth (paired t-test, *P*<0.001).

Follow-up results of the 12 enrolled patients

Variables	Baseline	Follow-up	P value*
Radiograph measurements			
Cobb angle ($^\circ$)	89.7±19.6	66.8±20.9	<0.001
T1-T12 height (mm)	142.8±26.4	179.0±28.2	<0.001
T1-S1 height (mm)	256.2±45.6	323.3±49.2	<0.001
Thoracic width (mm)	178.4±20.5	200.1±24.6	<0.001
Thoracic depth (mm)	72.6±14.1	95.0±21.3	<0.001
SAL (%)	75.1±11.3	89.0±7.6	<0.001
Nutritional status			
BMI (kg/m²)	15.9±2.5	19.0±3.7	0.001
Hemoglobin (g/L)	129.9±7.0	134.1±8.6	0.109

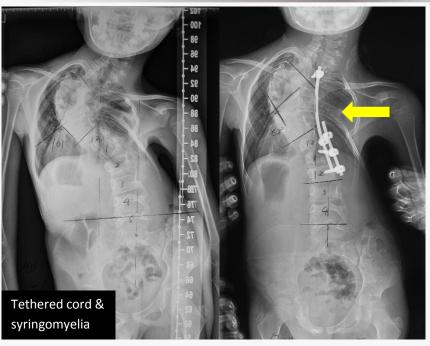
SAL, space available for lung; BMI, body mass index.


Implantation related complications

- ➢ 66.7% of the patients (8/12)
- > 12 cases: anchor failure
- > 2 cases: rod breakage
- All managed during lengthening
- 3 patients transferred to DGR

	Implant	related complicat	plication (No. of cases)			
Pt. No.	Proximal AF	Distal AF	Rod breakage			
1	1	1	0			
2	1	1	0			
3	0	1	0			
4	0	0	0			
5	1	0	0			
6	1	2	1			
7	0	2	0			
8	0	0	1			
9	0	0	0			
10	0	0	0			
11	0	0	0			
12	1	0	0			
Total	5	7	2			

Pt. No., patient number; AF, anchor failure.



Pre-index

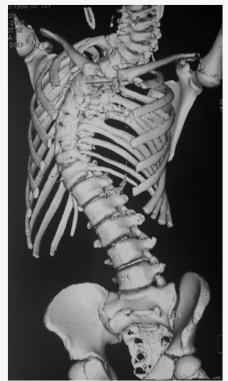
Post-index

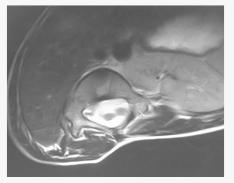
- 50% decrease of MEP when T2 screw insertion
- Resolved by adjusting the direction of screw

Pre-index

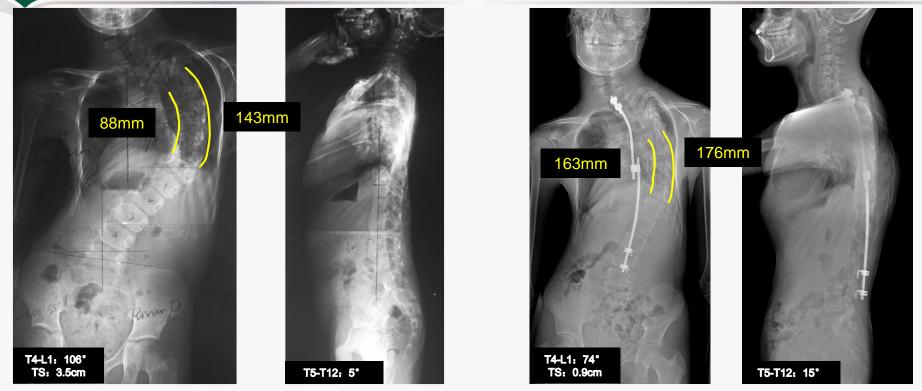
Post-index

- 60% decrease of MEP when distraction and correction
- Resolved by observation


CASE 1



10Y/M, Congenital scoliosis, type II split cord malformation



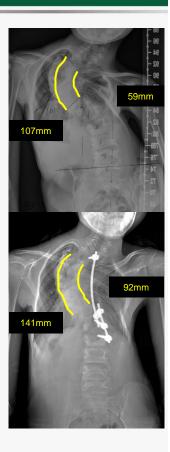
CASE 1

Pre index surgery, T5-T11 segmentation failure, Jun 2010 7th lengthening with fusion, Aug 2014

Pre index surgery, T2-T7 segmentation failure, Mar 2010 Post 8th lengthe

Post 8th lengthening, Aug 2015

Conclusion



Key finding

SGR accelerates the growth of concave side of USLs

Significances

- SGR rebalances the growth of USLs by lengthening the concave side
- Helpful for spine growth and development of pulmonary function

Looking Forward

Single rod TGR or MCGR

- Both intermittent lengthening the concave side and are useful for rebalancing the spine
- But the pediatric spine growth is not intermittent so it may cause PJK or DJK

Mimic nature growing of the spine by Remote Controlled Continued Growing Rod may improve the treatment of EOS

