Development of a Risk Severity Score (RSS): What they Tell Us and How We Use Them

Michael G. Vitale MD MPH

Ana Lucia Professor of Pediatric Orthopedic Surgery,

Chief, Pediatric Spine and Scoliosis Surgery

Director, Division of Pediatric Orthopedics

Vice Chief, Quality and Strategy; Department of Orthopedic Surgery

Children's Hospital of New York- Presbyterian; Columbia University Medical Center

Disclosures

- Royalties: Zimmer-Biomet
- Consultant: Stryker, Zimmer-Biomet
- Research Support: PSSG, SRS,POSNA; OREF
- BOD: POSNA, PSSG; SP3

Disclosures

Hiroko Matsumoto (PhD)

Adelina

9 yo with Congenital Myotonic Dytrophy

CEOS N3+P2 EOSQ 37 (68)

Debilitating Head Tilt /Progression of Pelvic Obliquity s/p VEPTR

AR: 9 yo Surgical History

PSH:

- 7/24/09: VEPTR insertion on the right side
- 3/5/10: VEPTR lengthening
- 5/29/10: Right acetabular and femoral osteotomy with extensive soft tissue release; Right hip adductor tenotomy; Right hip arthrogram
- 10/1/10: VEPTR lengthening
- 2/4/11:Revision of proximal hardware of VEPTR and revision of femoral osteotomy
- 6/24/11; 1/6/12: VEPTR lengthenings
- 7/10/12: Revision of VEPTR to proximal hooks; insertion of Left rod
- 10/23/12: Revision and lengthening of VEPTR (migration of s hook)
- 6/13/13; 1/7/14; 6/5/14: VEPTR lengthenings

Plan

Stage One: HWR; PCO; Traction

Stage Two: ? VCR and PSIF

"Surgical Misadventure"

- BMI 14
- PGY2 assist;
- Hypotensive Soon After Skin Incision
- Acutely Hypotensive during PCO
- Irrepairable Dural Tear; Fat graft Duraseal

"Surgical Misadventure"

- Persistent Wound Drainage
- Infection
- 7 weeks in ICU
- 8 surgeries
- \$825,000

Root Cause Analysis

		PATIENT A	GE:	9 yr		
MRN: 5074841	1	GENDER:	F			
PRIMARY DIAGNOSIS scoliosis		SECONDA	RY DIAGNO	SIS:	MD/ryanodine recep	
DATE OF SURGERY: 8/12/2015	5	DATE OF F	IRST POSIT	IVE CULTU	9/3/201	
CHATHER COLUBER (SITE)		ORGANISI	4.			
CULTURE SOURCE/SITE:	-					
9/3/2019		a.	staph epi			
b.		b				
WAS PATIENT DISCHARGED AT HOMI	E NO	WAS WOU	JND VAC IN	ITIATED?	YES DATE: (CSF leak)	
WAS WOUND NOTED TO DEHISCED?	NO					
WHAT POD DID PATIENT PRESENT TO	OFFICE/ER	POD#	POD 22			
PRE-OP RISK FACTORS/PERFORMANC	E MEASURES	S				
12 YRS OR OLDER	NO	SUB-OPTIM	AL NUTRITIO	NAL STATUS	BMI=14	
NON-AMBULATORY	YES	INCONTINE	INCONTINENT		YES	
PRE-OP BOWEL PREP DONE	NO	PRE-OP URI	NE CULTURE	DONE	YES; RESULT= Neg	
CHG SKIN PREP DONE (HOME NIGHT BEFOR	RE SURGERY)	YES				
INTRA-OP RISK FACTORS/PERFORMA	NCE MEASUR	RES				
SURGICAL INCISION TO PELVIS	YES	ESTIMATED	BLOOD LOSS	call PPPC	AMOUNT= 400mL	
RECEIVED BLOOD PRODUCTS	YES	PROLONGE			SURGERY TIME=	
PLASTIC SURGICAL CLOSURE	YES		ETADINE SOA		YI	
VANCOMYCIN POWDER USED IN BONE GRA		YES		AN A D IVIIIN	11	
INTRA-OP WOUND IRRIGATION WITH NS A		YES				
INTRA-OP WOUND IRRIGATION WITH NS A	ND BEIADINE	YES				
ACCURATE SSI was on abx	CO	RRECT DOSE:	CEFAZOLIN	N - Y/N	TOBRAMYCIN - Y/N	
INTRA-OP ANTIBIOTIC	CORREC	T INTERVAL:	CEFAZOLIN	N-Y/N	TOBRAMYCIN - Y/N	
COMPLIANCE NTR-OP REDOSE O	F ANTIBIOTICS	INDICATED:	CEFAZOLIN	N-Y/N	TOBRAMYCIN - Y/N	
POST-OP RISK FACTORS/PERFORMAN	ICE MEASUR	ES				
DISRUPTION TO IOBAN POST-OP SPINE DRE		Y/N	FECAL SOILI	NG?	Y/N	
DISRUPTION TO AQUACELL POST-OP SPINE	DRESSING	Y/N	FECAL SOILI	NG?	Y/N	
ACCURATE SSI	COL	RRECT DOSE:	CEFAZOLIN	l	TOBRAMYCIN - Y/N	
POST-OP ANTIBIOTIC	COI		JEI PEULII	/!*	100 MINION - 1/14	
COMPLIANCE	CORREC	TINTERVAL:	CEFAZOLIN	I-Y/N	TOBRAMYCIN - Y/N	
					LOS 61 days	

AR- Dural Tear/SSI

Host

Procedures/Indications

Congenital Myotonic Dyst.

Hypotension creates urgency

Severe Kyphoscolosis

Attending operating on both

Multiply Operated

sides Attending operating on both

Very Difficult anatomy

sides **Dural Tear/SSI**

Role of "Dual" Surgeons?

Good communication with Anesthesia

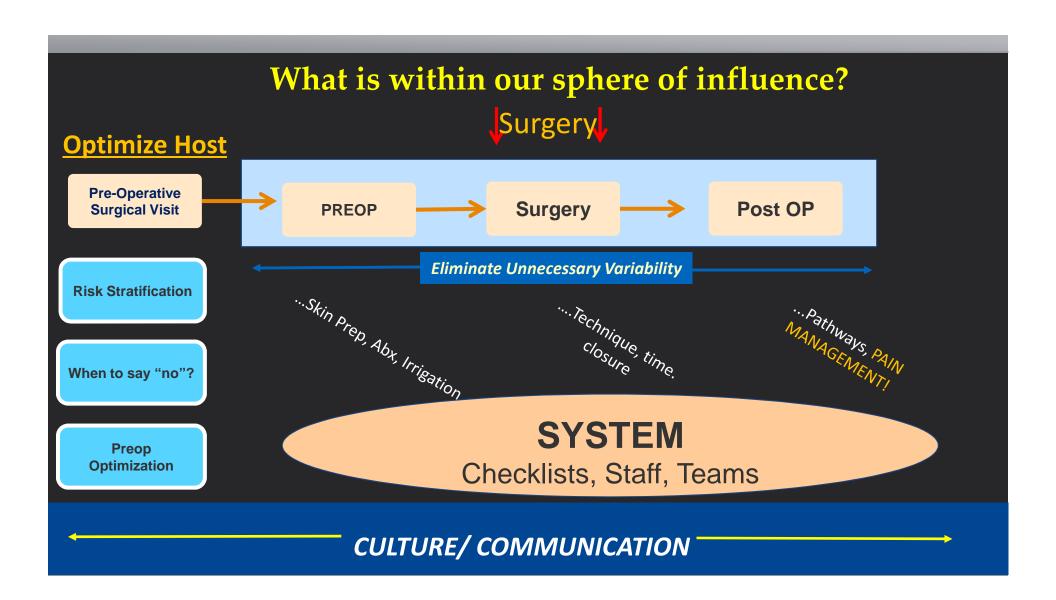
Presented in Preop Conference

System

Communication

POD 71

Beautiful Little Kid ?.... Or Hand Grenade?


Emma- RSS 42%

Yes. I got this.
I'm calling in the reinforcements. Jh my

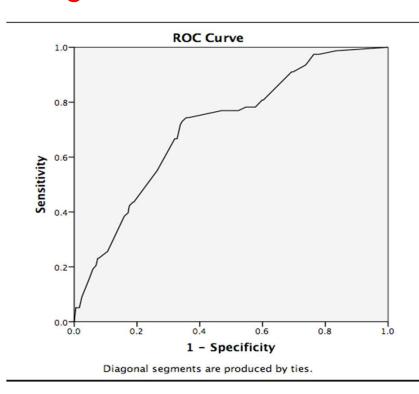
Preoperative Screening Tool to Identify High-Risk Patients

Clinical Factors	Imaging Factors	Surgical Factors		
Etiology:	X-ray:	☐ Revision surgery		
☐ Neuromuscular	☐ Large Coronal Cobb Angle			
☐ Syndromic	☐ Large Kyphosis	☐ Combined anterior and posterior approach		
☐ Congenital	☐ Upper thoracic curve	☐ High number of fusion		
Co-morbidities:	☐ High Deformity Angular Ratio (DAR=°kyphosis/# levels)	levels		
☐ Cardiopulmonary disease	(DAIL RYPHOSIS)# IEVEIS)	☐ Inability to obtain		
☐ Neural axis abnormality	☐ Stiff curve (low flexibility index)	baseline neuromonitoring		
☐ Skeletal dysplasia				
	MRI:	☐ Vertebral column resection		
Symptoms:	☐ Decreased AP cord diameter			
☐ High rate of symptom	☐ Decreased transverse area of	☐ Pedicle subtraction		
progression	Decreased transverse area or	osteotomy		

30 Risk Factors Were Investigated

- Age
- Gender
- Height
- Weight
- BMI
- Scoliosis etiology
 - Congenital
 - Syndromic
 - Idiopathic
 - Neuromuscular (SB, CP, SMA)
- Presence of fused ribs
- Presence of comorbidities
 - Cardiac
 - Developmental Delay
 - Endocrine
 - Gastrointestinal
 - Immunologic

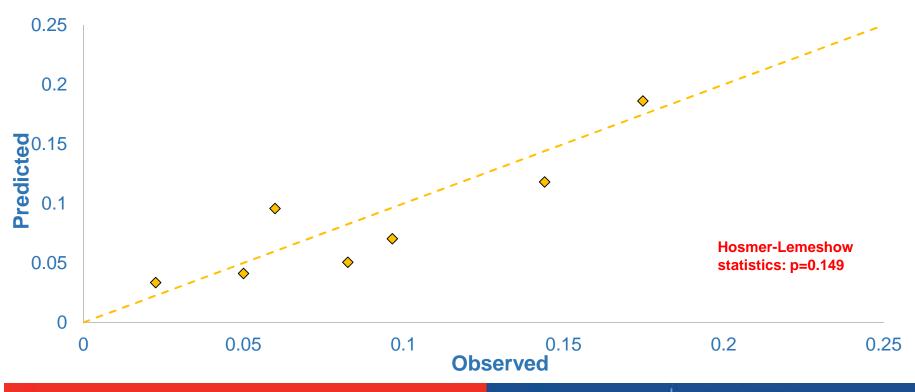
- Musculoskeletal
- Neurologic
- Nutrition
- Pulmonary
- Urinary incontinence
- Use of assistive devices
 - VP shunt
 - G-tube
 - Assistive ventilation
- Ambulatory status
- Surgery type
 - Index surgery
 - Fusion
 - Revision
- Cobb angle
- Kyphosis


A Multiple Logistic Regression Model was Utilized to Develop the EOS Risk Severity Score Model

80 patients had SSI (6.7%)

Variable	Beta	95% CI 1	Odds	
Variable	Dela	Lower	Upper	Ratio
Neuromuscular Etiology	0.828	0.148	1.508	2.289
*Spina Bifida	0.376	-0.727	1.479	1.456
*Spinal Muscular Atrophy	0.304	-0.778	1.386	1.355
Urinary Incontinence	0.287	-0.354	0.928	1.332
VP Shunt	0.387	-0.240	1.014	1.473
Developmental Delay	0.347	-0.198	0.892	1.415
Endocrine Comorbidity	1.499	0.881	2.017	4.259
Gastrointestinal Comorbidity	0.276	-0.273	0.825	1.318
Pulmonary Comorbidity	0.19	-0.398	0.778	1.209

^{*}SMA or SB presence necessitates Neuromuscular etiology presence

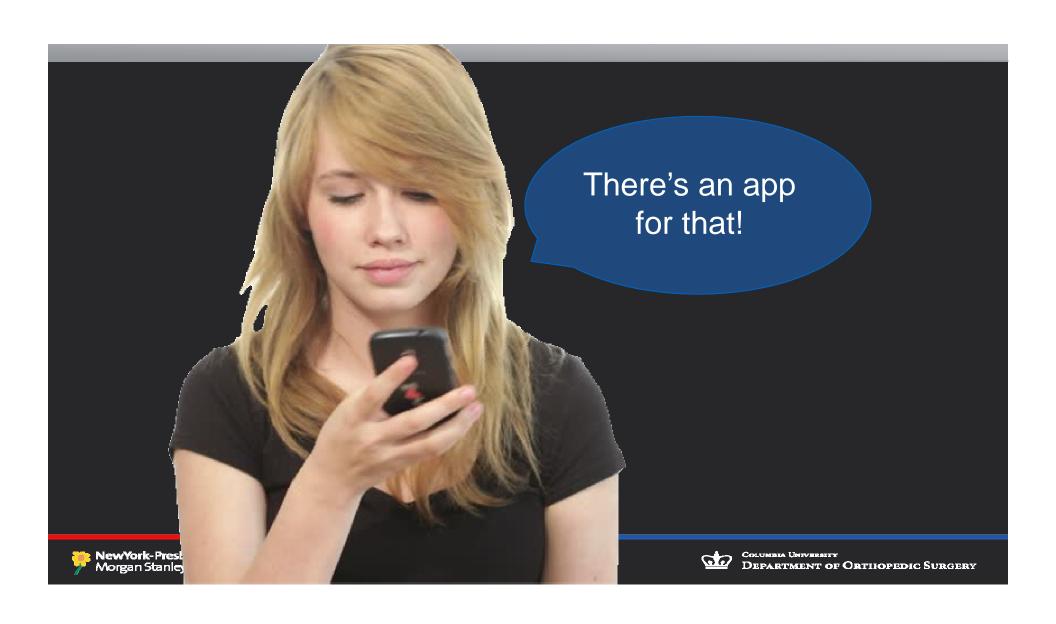

Receiver Operating Characteristic (ROC) curve demonstrates good discrimination of those with and without SSI

Predictive ability (c-statistic) = 70.6%

Model has excellent calibration consistent with observed values

¬NewYork-Presbyterian

Development of a Risk Severity Score for EOS

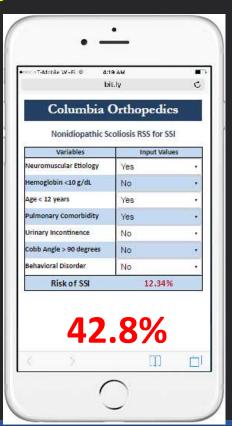

	Beta	Odds Ratio
Congenital Etiology	0.969	2.636
Syndromic Etiology	0.157	1.169
Cobb > 70°	0.818	2.267
Hypokyphosis	0.477	1.611
G-Tube	1.468	4.343
Non-ambulatory Status	1.067	2.906
Pulmonary Comorbidity	0.299	1.349

exp [-4.481 + 0.969(Congenital Etiology) + 0.157(Syndromic Etiology) + 0.818(Cobb>70°) + 0.477(Hypokyphosis) + 1.468(G-Tube) + 1.067(Nonambulatory) + 0.299 (Pulmonary Comorbidity)]

Probability= |

1 + exp [-4.481 + 0.969(Congenital) + 0.157(Syndromic) + 0.818(Cobb>70°) + 0.477(Hypokyphosis) + 1.468(G-Tube) + 1.067(Non-ambulatory) + 0.299 (Pulmonary Comorbidity)]

Predictive Ability 78.4%


Online Risk Severity Score

APP STORE

"SSI RSS"

- EOS, NMS, AIS
- Also available at

www.safetyinspinesurgery.org

All pre-operative patients receive an RSS score during weekly indications conference

Beauchamp, Eduardo

☐ Lenke, Lawrence G.; ☐ Vitale, Michael G.; + 26 -

1

CHONY Spine Cases Week Mar 12-16, 2018

Spine Cases wk Mar 12-16.docx 3 MB

Good afternoon,

CHONY Spine cases for next week. Please feel free to co questions or concerns. Thank you

-Eduardo

Eduardo C. Beauchamp, MD Advanced Pediatric Spine Deformity Fellow Department of Orthopedic Surgery Columbia University Medical Center NewYork, NY eb3138@cumc.columbia.edu

Classification: Kyphoscoliosis

HPI: 11M with kyphoscoliosis s/p VEPTR (11/24/2009) which was transitioned to MAGEC (6/26/2015). This was complicated by wound issues and prominent hardware, and subsequent ROH (9/28/2016). He has had very slow or no correction since that point. He is active, plays baseball and has no complaints.

PMH: Scoliosis Asthma

Meds: None

Physical Exam:

131cm 28.6kg BMI: 16.7 Incisions healed Kyphotic deformity Quite thin

Imaging:

Thoracic curve: 80° Kyphosis is 100°

RSS: 3.34%

Diagnosis: Kyphoscoliosis

Plan: Halo placement

Equipment: OSI, halo

To What Degree Does Surgeon Experience Matter? Predicting Risk of Surgical Site Infection in Early Onset Scoliosis

Study Objectives

To compare predictive abilities between RSS and surgeons

Methods

- Experienced pediatric spine surgeons were surveyed to assess risk of SSI in 15 EOS patient vignettes
- Aggregated prediction was compared to RSS calculator

Results

- Surgeons' averaged input and RSS predictions were similar in most cases
- However, there was wide variability among surgeons, suggesting that some surgeons were inaccurately estimating SSI risk

Case #	1	2	3	4	5	6	7	8	9	10
RSS (%)	57.7	5.5	7.2	8.0	24.3	11.4	8.0	30.0	7.6	3.9
Surgeon Prediction,	21.6	6.8	7.1	10.7	25.5	9.1	8.3	20.7	9.2	6.1
Average (%)										
Surgeon Prediction,	5-50	1-20	2-16	3-25	3-50	3-20	3-19	10-41	2-19	2-19
Range (%)										

Plastic Multilayered Closure in Nonidiopathic Scoliosis

Purpose

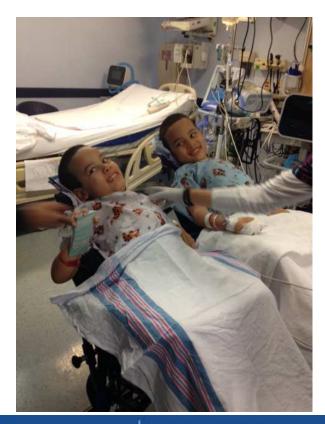
 To assess the effect of PMC on SSI and wound complications in patients with non-idiopathic scoliosis undergoing primary or revision instrumentation or fusion.

Methods

 Compare wound complications in standard and plastic multilayered closures to <u>expected risk calculated by RSS</u>

Compared to standard closure, PMC decreased a patient's risk of SSI by 7.1%

	PMC	Standard Closure
Observed SSI	1.7%	8.9%
Expected SSI (from RSS) *	5.6%	5.7%
Expected vs Observed SSI	-3.9%	+3.2%
(Expected SSI – Observed SSI) _{PMC} – (Expected SSI – Observed SSI) _{standard}	-7.1%	


RSS: Next Steps

- Add modifiers to the RSS
 - Surgical characteristics
 - Antibiotic prophylaxis regimens
 - Hospital characteristics
 - "Subjective" surgeon adjustment
- Validity studies
 - Apply RSS to new sets of patient cohort
 - Compare predictive ability with other models (e.g. NSQIP)

Conclusion: RSS in EOS

- Will allow much more "real" informed consent with family
- Allows us to "slow the line", and optimize patient preop
- Allows consideration of different surgical approach (2 surgeons, limited goals, consider saying no)

SafetyinSpineSurgery.com

SAVE THE DATE

Visit Us in NYC!

Safety

Transforming Patient Care and thimizing Outcomes

FRIDAY **MARCH 13** 2020

5TH ANNUAL

NEW YORK CITY

NEW YORK

IN SPINE SURGERY

SUMMIT

CHAIR:

Michael G. Vitale, MD, MPH

CO-CHAIRS:

John M. Flynn, MD Roger Härtl, MD Lawrence G. Lenke, MD Rajiv K. Sethi, MD

An **ESSENTIAL** program for:

- Spine surgeons
- · Surgical spine team members
- · Hospital execs responsible for patient safety

► Registration will open in fall 2019

JOINTLY PROVIDED BY

BROADWATER.

-NewYork-Presbyterian

COLUMBIA COLUMBIA

COLUMBIA UNIVERSITY
DEPARTMENT OF ORTHOPEDIC SURGERY

On Behalf of Our Patients, THANK YOU!

