# How Do We Optimize Comprehensive Care in EOS?

# **Evaluating Height and Growth**

Ron El-Hawary, MD, MSc, FRCS(C) Halifax, Nova Scotia, Canada





## Disclosures

- Grants / Research Support
  - Depuy-Synthes Spine
  - Medtronic Canada
  - Joint Solutions
  - EOS Imaging
- Consultant
  - Depuy-Synthes Spine
  - Medtronic Canada
  - Apifix Ltd.
  - Wishbone Medical



### Overview

- Case Based Presentation
- 3D CT Lung Volumes
- Spine Height Normal, 18 cm rule
- Spine Length Sagittal Spine Length (SSL)
- Spine Length 3D (3D-TSL)
- 3D-TSL References



## Case – April 2015

- 5 Y old girl
- Scoliosis
- Prader Willi Syndrome

















The Volume of Lung Parenchyma as a Function of Age: A Review of 1050 Normal CT Scans of the Chest With Three-Dimensional Volumetric Reconstruction of the Pulmonary System

Sohrab Gollogly, MD,\* John T. Smith, MD,\* Spencer K White,\* Sean Firth, PhD,† and Keith White, MD\*



| Region    | Volume (ml) | Mean HU 🛛 🖄    |
|-----------|-------------|----------------|
| 🔲 Rt Lung | 336.94      | -617.7 ± 221.4 |
| 🔲 L Lung  | 291.69      | -597.9 ± 218.2 |
| Total     | 628.63      |                |







## April 2015





## April 2015 – TROLLEY Guided Growth







## May 2016















### April 2015 - October 2017

Weight Height Sitting Height Arm Span

EOSQ = 88/100 (Feb 2017)





## April 2018







## April '15 – April '18







### Normal Spine Growth





Dimeglio, JPO-B 1993

### Normal Spine Growth





Dimeglio, JPO-B 1993

### Normal Spine Growth





Dimeglio, JPO-B 1993

## Spine Growth



"Growth from Insertion" True Growth Phase



![](_page_20_Figure_0.jpeg)

Expected Growth:

Age 6-10 yrs

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_5.jpeg)

= 5.8 cm total

= 4.3 cm growth (159% Expected)

![](_page_20_Picture_8.jpeg)

### 18 cm Rule

- Outcomes (8 years old)
  - T1-T12 18.6 cm
  - % FVC

![](_page_21_Figure_4.jpeg)

![](_page_21_Figure_5.jpeg)

![](_page_21_Picture_6.jpeg)

Karol et al., JBJS 2008

Can Distraction-Based Surgeries Achieve Minimum 18 cm Thoracic Height for Patients with Early Onset Scoliosis?

> Yehia ElBromboly, Jennifer Hurry, Charles Johnston, Anna McClung, Amer Samdani, Michael Glotzbecker, Tricia St. Hilaire, Tara Flynn, Ron El-Hawary, Children's Spine and Growing Spine Study Groups

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_23_Picture_0.jpeg)

### Rib-based Distraction Surgery Maintains Total Spine Growth

Ron El-Hawary, MD, MSc, FRCS(C),\* Amer Samdani, MD,† Jennie Wade, BS, CCRP,‡ Melissa Smith, NP,‡ John A. Heflin, MD,‡ Joshua W. Klatt, MD,‡ Michael G. Vitale, MD,§ John T. Smith, MD,‡ and Children's Spine Study Group

![](_page_24_Figure_2.jpeg)

International Congress on Early Onset Scaliasis CEOS 2018 vember 15 – 16. 2011

#### JPO 2016

### **Rib-based Distraction Surgery** Maintains Total Spine Growth

Ron El-Hawary, MD, MSc, FRCS(C),\* Amer Samdani, MD,† Jennie Wade, BS, CCRP,‡ Melissa Smith, NP, ‡ John A. Heflin, MD, ‡ Joshua W. Klatt, MD, ‡ Michael G. Vitale, MD, § John T. Smith, MD, ‡ and Children's Spine Study Group

![](_page_25_Figure_2.jpeg)

International Congress on Early Onset Scoliosis

CEOS 2018

vember 15 – 16. 2011

Kyphosis

**JPO 2016** 

### Out of Plane Growth?

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

### Sagittal Spine Length Measurement: A Novel Technique to Assess Growth of the Spine

Alan J. Spurway, PEng, MSc<sup>\*</sup>, Chukwudi K. Chukwunyerenwa, MD, MCh, FRCS (C)<sup>1</sup>, Waleed E. Kishta, MD, PhD, FRCS (C)<sup>2</sup>, Jennifer K. Hurry, MSc, Ron El-Hawary, MD, MSc, FRCS (C)

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

Spine Deformity 2016

### Sagittal Spine Length Measurement: A Novel Technique to Assess Growth of the Spine

Alan J. Spurway, PEng, MSc<sup>\*</sup>, Chukwudi K. Chukwunyerenwa, MD, MCh, FRCS (C)<sup>1</sup>, Waleed E. Kishta, MD, PhD, FRCS (C)<sup>2</sup>, Jennifer K. Hurry, MSc, Ron El-Hawary, MD, MSc, FRCS (C)

![](_page_28_Figure_2.jpeg)

ational Congress

Spine Deformity 2016

## April '15 – April '18

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_30_Figure_0.jpeg)

- Expected Growth SSL:
  - Age 6-10 yrs
    - Unknown
- Delta T1-S1 SSL
- = 6.3 cm total = 4.3 cm growth

![](_page_30_Picture_6.jpeg)

![](_page_30_Picture_7.jpeg)

### Three-dimensional True Spine Length: A Novel Technique for Assessing the Outcomes of Scoliosis Surgery

Alan J. Spurway, P.Eng., MASc,\* Jennifer K. Hurry, P.Eng., MASc,\* Luke Gauthier, MD, FRCS(C),\* Ben Orlik, MD, FRCS(C),\*† Chukwudi K. Chukwunyerenwa, MD, MCh, FRCS(C),\* Waleed E. Kishta, MD, PhD, FRCS(C),\* and Ron El-Hawary, MD, MSc, FRCS(C)\*†‡

- 3D-TSL
- Biplanar, 3D Measurement Technique
- Follows the True Path of the Spine

![](_page_31_Figure_5.jpeg)

![](_page_31_Picture_6.jpeg)

### Three-dimensional True Spine Length: A Novel Technique for Assessing the Outcomes of Scoliosis Surgery

Alan J. Spurway, P.Eng., MASc,\* Jennifer K. Hurry, P.Eng., MASc,\* Luke Gauthier, MD, FRCS(C),\* Ben Orlik, MD, FRCS(C),\*† Chukwudi K. Chukwunyerenwa, MD, MCh, FRCS(C),\* Waleed E. Kishta, MD, PhD, FRCS(C),\* and Ron El-Hawary, MD, MSc, FRCS(C)\*†‡

### • 3D-TSL is

- Accurate (0.4% error)
- Reliable (0.952 ICC)
- Repeatable (0.944 ICC)

• 3D-TSL results in greater spine length as compared to traditional coronal plane measures.

![](_page_32_Picture_7.jpeg)

![](_page_33_Figure_0.jpeg)

- Delta T1-S1 3D-TSL
  - = 5.0 cm total = 4.3 cm growth

![](_page_33_Figure_3.jpeg)

![](_page_33_Picture_4.jpeg)

### Reference Centile Curves for 3D Spine Length in Healthy Children

Marie Beausejour PhD, Félix Thibeault MS, Paul Dallaire PhD, Ron El-Hawary MD, MS, James O. Sanders MD, Burt Yaszay MD, Behrooz A. Akbarnia MD, Marjolaine Roy-Beaudry MSc, Patrick Tohmé, Léonie Tremblay, <u>Stefan Parent MD, PhD</u>

#### Centile curves of 3D True Spinal Length in children 3 to 11

![](_page_34_Figure_3.jpeg)

![](_page_34_Figure_4.jpeg)

### Conclusions

**3D CT Lung Volumes** 

Spine height and growth has traditionally been measured utilizing coronal plane spine height measurements.

- Dimeglio's data

### Conclusions

Spine height should be measured pre-operatively and immediately post-operatively

- Initial "growth"
- Not really growth just straightening a curve(s)

Spine height should be measured at routine intervals

- Distraction / True Growth Phase

![](_page_36_Picture_6.jpeg)

### Conclusions

### Out of plane spine growth

- Spine Length Sagittal Spine Length (SSL)
- Spine Length 3D (3D-TSL)
- 3D-TSL References

![](_page_37_Picture_5.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)