Growing Rod Instrumentation and Vertebral Body Growth:

A Radiological Investigation in Immature Pigs

Guney Yilmaz,, Gokhan Demirkiran, Kenan Daglioglu, Cenk Ozkan, Gazi Huri, Muharrem Yazici

Heuter-Volkmann principle

- Appendicular skeleton
 - Growth stimulation with distraction
 - Growth inhibition with compression

Heuter-Volkmann principle and Spine

Compression

Heuter-Volkmann principle and Spine

- Distraction
 - Stokes IA
 - Animal tails
 - Ilizarov frame with spings(continues distraction)
 - Distraction stimulates vertebral growth
 - Growth of unsegmented bar after VEPTR ??
 - Stimulation or preservation of growth?

Growing rod instrumentation

- Control of deformity
- Preservation of growth potential
- Stimulation of growth????

Purpose

 To evaluate the vertebral body growth under the distraction forces in immature pigs treated with growing rod technique

- 8 eight-week old domestic pigs
 - 1 excluded (early DWI and pull-out of implants)

- Skin incision
 - T11-L6
- Subperiosteal exposure
 - T12-L1 and L4-5
- Pedicle screw instrumentation
 - T12-L1 and L4-5

- Distraction
 - Index surgery
- Rod lengthening
 - 1st and 2nd month
- Sacrification
 - Postoperative3rd month

- Vertebral body heights
 - Before index and final FU
 - Distracted segments (n= 14)
 - L2 and L3
 - Control segments (n= 21)
 - T9, T10, T11
 - Average VBH and % increase in VBH

Results

	HD	нс	p
Preop	11.29	11.14	0.231
FU	18.66	16.89	0.001
% increase	65	51.89	0.005

Conclusion

- Vertebral growth continues during growing rod instrumentation
- Distraction forces (growing rod instrumentation) also stimulates apophyseal growth of axial skeleton