The evolution of sagittal segmental alignment of the spine during growth

Muharrem Yazici, MD

Hacettepe University, Ankara, Turkey

Background

- □ Planning of the 3D reconstruction of the spine
 - □ Normative data about the sagittal plane
- □ Segmental sagittal plane analysis
 - Many studies for adults
 - ☐ Inadequate data on children

Questions

- Whether the pediatric spine is a miniature of adults' in terms of sagittal plane alignment?
- ☐ If not, do segmental alignment of the vertebrae change with growth?

Objective

- □ To describe the normative data of the sagittal plane on pediatric age population
- □ To document the evolution of sagittal alignment with growth

Materials&Methods

- □ 151 children (72 girls, 79 boys)
 - No musculoskeletal abnormality
 - □ Spine deformity
 - ☐ Limb length inequality
 - ☐ Hip or knee contracture
 - No previous spinal surgery
 - ☐ Age, 3 to 15
 - ☐ Minimum of 10 children in each age group
 - ☐ At least 4 of them from one sex

Materials&Methods

- □ Standart radiograms
 - ☐ Same technician
 - ☐ Left side at the cassette side
 - ☐ Tube-cassette distance, 150 cm
 - □ 36-inch standing lateral X-ray with the arms flexed at 30°

Variables

- Segmental angulations from T1-2 to L5-S1
- □ Global kyphosis (T1-12) and lordosis (L1-S1)
- Apices
- □ T1 and L1 offsets
- Location of thoracic and lumbar apices
- Spinopelvic alignment measurements
 - □ Alpha and Beta angles
 - □ Sagittal vertebral axis (SVA)
 - □ Sacropelvic translation (SPT)
 - □ Sacral translation(HA-S1)

Statistical analysis

- ☐ Grouping in terms of ages
 - ☐ Group I (3 to 6 years of age)
 - ☐ Group II (7 to 9)
 - ☐ Group III (10 to 12)
 - ☐ Group IV (13 to 15)
- □ Intra-observer error
 - □ Re-measurement of 20 radiograms

- □ Intraobserver error
 - □ Segmental measurements 2.4°±2.2
 - □ Milimetric measurements 2.6 mm±2.9
 - Upper thoracic area is problematic
 - □ Difficulty in defining the upper thoracic vertebral endplates
- ☐ HA-S1 and alpha angle
 - □ 94 X-rays only
 - □ Quality
 - □ <5 years of age
 - ☐ Lack of femoral head ossification center

- □ Pediatric vs. adults
 - ☐ Greater thoracic kyphosis
 - □ Smaller lumbar lordosis
 - □ Especially upper 3 segments hypolordotic
 - More kyphotic thoracolumbar region
 - □3.6°-9.8°
 - ☐ More forward sagittal vertical axis
 - □ Lower sacral inclination

Significant difference among Groups

- □ Junctions
 - ☐ Segmental angulations of T1-2 (p=0.015)

TRANSLATION

- □ T10-L2 (p=0.014)
- □ L4-S1 (p=0.001)
- ☐ Global kyphosis angle (p=0.005)
- ☐ Global lordosis angle (p=0.000)
- □ Thoracic apex (p=0.007)
- □ T1 offset (p=0.000)
- □ SVA (p=0.004)
- Beta angle (p=0.000)

- Sagittal spinal alignment is changing as child grows
- Significant difference especially at cervicothoracic, thoracolumbar, and lumbosacral junctions

- □ With age
 - □ Total thoracic kyphosis, and total lumbar lordosis particularly due to lower 2 motion segments, were found to be increased
 - Not linear
 - ☐ Group III/adolescent growth spurt
 - □ Anterior column growth exceeds posterior
 - ☐ Thoracic apex moved upwards

- □ The position of the sacrum (inclination and translation), and spatial orientationchanges with growth
- Older children to stand with a more negative
 SVA

☐ Trend of alpha angle was disturbed because of Group 3

Drawbacks

- Not regular randomization
 - □ Same technician
 - □ Random selection
 - No bias
- □ Only ten subjects in each group
 - ☐ Statistical power?
 - □ Regrouping
- □ Cross-sectional design
 - □ Prospective study??

Conclusion

- □ Not a smaller model
- □ Alignment dynamically changes
- □ Young patients who require spinal instrumentation!!!
 - Negate the adverse effects of sagittal malalignment
 - □ Risk for abnormal loading
 - □ Adjacent spine segments
 - ☐ Hip, knee

COPYRIGHT © 2002 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED

NE

Early spine fusion

Conclusion

- □ Whether sagittal alignment should be restored according to the normative data for the child's age or to the normative data for the adulthood?
 - □ Adult data
 - □ Abnormal loading
 - □ Pediatric data
 - □ Adult posture can never be attained