Non-Fusion Distraction Procedures: Spine-Based

Paul D Sponseller MD Baltimore MD

Outline

- Rationale for spine-based distraction
 - Mechanical
 - Biological
- Indications
- Techniques
- Complications

"Spine-Based"

- Anchored in the spine
- Directed at spinal balance
 - Rather than thorax itself

Importance of Early Spinal deformity correction

- Pulmonary
 - PFTs and QOL suffer with early TSF (Vitale)
- Abdominal
- Comfort?
- Energy costs
- Self-Image
- Late degenerative effects
- Many remain to be proven
 - Clinical research

Four Decades of History

- Harrington 1962
- Moe 1984
- Marchetti (end fusions, 1975)
- Apical fusions- did not help control spine
- Dual rods (Akbarnia, McCarthy)
- Regular lengthening (Akbarnia, Thompson)
 "drive the spine"

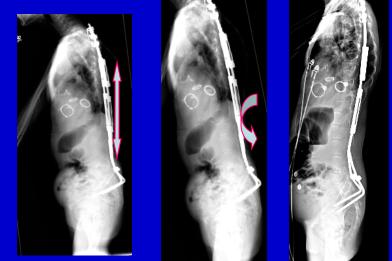
Spine-Based distraction -mechanical advantages

- "Foundation" stability

 Different anchor types and numbers

 Continuum of anchor points

 T1-pelvis
 - Not limited by rib shape

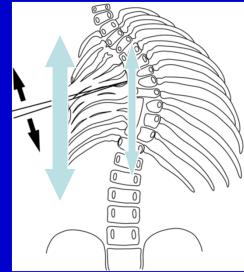

Mechanical advantages

- Some control of kyphosis
 - Posterior cantilever from rigid foundations
 - More with pedicle screws?
- Adjustable
 - Change balance
 - To a limited degree

Spine-based Distraction -mechanical disadvantages

- Relatively kyphogenic

 Distracting from back
 muscle can't help
 - Cantilever if anchors OK


Junctional stresses

 Cause PJK, DJK, DJD?
 Are these less with rib procedures?

Mechanical Disadvantages

- Unprotected Implant stresses
 Relatively high fracture rate
 10+%
- Less leverage than rib cage

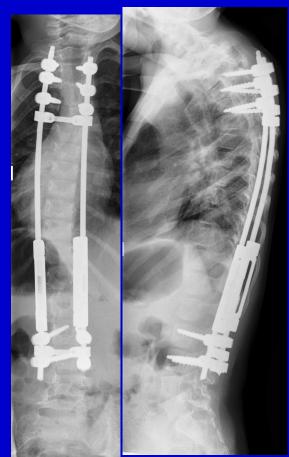
Spine-based Distraction -biological advantages

- Rib movements unimpaired
- Intercostals not scarred
- Implant prominence minimal

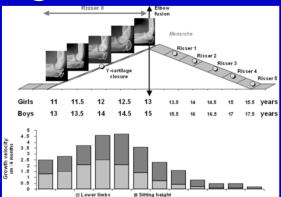
Biological advantages

May maximize length

What is optimal distraction frequency?


Prevents "heroic" procedures

Anterior / posterior
VCR


Spine-based Distraction
 -biological disadvantages

- Spine stiffens
 - May auto-fuse
- Paraspinous muscle atrophies
- "Buys" a future fusion
 Or effective fusion
- Young bone can "drift"
 Rigid implant pushes through

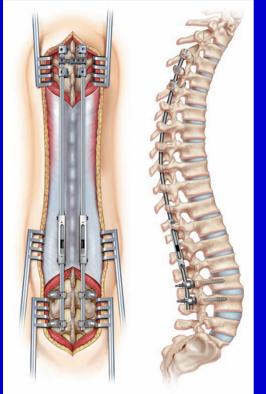
Indications

- Curve > ~60°
- Progressive rotation
- Poor brace experience
- >~4 yrs spinal growth remaining
 - Harrington: age <10
- Etiologies any?
 - Idiopathic
 - Neuromuscular
 - Genetic/syndromic

Indications

- "Cost"-benefit remains to be analyzed – Different for each diagnosis
- Exciting opportunity for research

Contra-indications


- Stiff curves
 - Role of traction / casting?
- Osteoporosis
- Dysplastic bone
- Rib fusions
- Poor soft tissues coverage

Technique: Foundations

- Marchetti, Faldini 1975: "end-fusions"
- Mahar, Akbarnia
 - Porcine pull-out test
 - 4 screws is strongest foundation
 - Hooks better in lumbar spine than thoracic
 - Birmingham construct
 - Cross-links did not prevent pull-out
 - Does not address young pedicles, drift

Technique

- Proximal foundation
 - $-\geq 2$ levels
 - Consider 3 if osteopenic
 - Address coronal & sagittal plane
 - Allograft or autograft fusion
 - Anchor types
 - Some cautions with young screws
 - Preserve supraspinous ligament

Technique

- Distal foundation
 - $-\geq 2$ levels
 - Pelvis an option
 - Hooks a disadvantage?
- Pelvic fixation
 - Ilium preferred

- Bury screws if used; add second anchor
- Rods: less modular but better tolerated

Technique

- Neuromonitoring for initial procedure
- May eliminate for subsequent procedures if quick, no prior events?
 - Surgeon's discretion
 - Same time as a wake-up test
 - Sankar, Skaggs

Construct

- Dual Rods: McCarthy, Akbarnia, Marks
- Rod diameter
 - 3.5-5 mm
- Metal
 - Ti vs SS vs others
 - Ti has better fatigue properties
- Cross-links
 - May decrease implant cut-out
 - May concentrate stress

Distractors

- Colinear (tandem)
- Side-to-side (wedding band)
- Distraction mechanism
- Automated (Phenix)
- Vs Self-distracting (Luque trolley, Shilla)
 Guided growth

Spine-based Distraction: Results

- 12 cm total spinal growth
 Approximates expected growth
- Complications 0.5-1+ per patient
- Dual rods superior
- Apical fusion not beneficial

Complications Bess et al 2008

- 143 patients with 910 procedures
 - Mean 6 yrs at 1st with 5 yrs f/u
 - -4.5 per patient
- > 2 complications per patient
- >1 unplanned procedure per patient
 Fewer with dual rods
- Wound complications ~25% of patients

Rod fracture

Long unprotected segment

Summary:

Spine-based distractive procedures

- Versatile
- Low prominence
- Preserve rib motion
- Continued technical improvements