Effect of posterior distraction forces on anterior intradiscal pressure in dual Growing Rod technique

^{1,2} Andrew Mahar, MS ^{2,3} Behrooz A. Akbarnia, MD
 ³ Michael Flippin, MD ¹ Tucker Tomlinson, BS
 ³ Pat Kostial, RN, BSN ^{2,3} Ramin Bagheri, MD

¹ Orthopedic Biomechanics Research Center Rady Children's Hospital
 ² Department of Orthopaedic Surgery University of California
 ³ San Diego Center for Spinal Disorders, San Diego

4th International congress on Early Onset Scoliosis and Growing Spine (ICEOS) November 19-20, 2010, Toronto, Canada

Author:

Co-Authors:

Disclosures

Andrew Mahar, MS

Behrooz A Akbarnia, MD

Michael Flippin, MD Tucker Tomlinson, BS Pat Kostial, RN, BSN

Ramin Bagheri, MD

(e) Alphatec Spine Inc.

(a,b) DePuy Spine,
(a,b,c) Nuvasive,
(a,b) K2M,
(a,b,c) Ellipse Technologies,
(a) K Spine

No relationships No relationships No relationships

(d) DePuy Spine,
(e) Embassy,
(a) Lanx,
(e) N-Spine,
(a,b,c,d,e) Nuvasive

Consultant

Stock/Shareholder

Speakers' Bureau

a.

b.

С.

d.

е.

Grants/Research Support

Other Financial Support

Background

It is theoretically possible that distraction maneuvers used in GR surgery:

- Produce a focal kyphogenic force
- Affects only one vertebral segment rather than multiple ones.
- Influences the growth of the spine

Purpose- Research questions

 Are the posteriorly applied distractive forces transmitted anteriorly in a distractive or compressive mode?

 How will they affect the anterior intradiscal pressure during growing rod surgery?

Materials and methods

- Six immature porcine spines were harvested with soft tissues and rib heads attached
- Upper foundation (T3-T4) was instrumented with 4.75 mm screws in 3 and with laminar hooks in the other 3
- Lower foundation (L3-L4) was instrumented with 4.75 mm screws in all 6

Materials and methods

- A distractor was instrumented with strain gauges and calibrated to calculate distraction forces
- One pressure sensor was inserted into the intradiscal space just inferior to the upper foundation (T3-T4) and one was inserted into the space midway between the upper and lower foundations

Distraction with screw-anchor upper foundation (416 \pm 101 N) produced significantly higher distractive forces compared to hook-anchor model (349 \pm 100 N).

There were no significant differences in disc pressure between levels or between different upper foundation constructs

	ADJACENT PRESSURE		MIDDLE PRESSURE	
	Hooks	Screws	Hooks	Screws
Mean	0.183	0.194	0.161	0.173
SD	0.098	0.062	0.065	0.083

Intradiscal pressure adjacent to upper foundation consistently had greater reduction than the level equidistant within the construct

 \bigcirc

Distraction performed with pedicle screw construct consistently demonstrated greater reduction in disc pressure compared to laminar construct.

Discussion

- More posterior location and more freedom of movement during distraction might be one explanation for the lower pressures recorded in hook vs pedicle constructs
- Applying a stronger distractive force via screw-anchor constructs resulted in more distraction (end plate separation) throughout the spine

Discussion

Possible iatrogenic canal stenosis due to neurocentral cartilage injury with pedicle screws should be weighed against controlling severely progressing curves in some very young syndromic cases.

Limitations

- This animal model does not replicate the in vivo sagittal profile of the EOS patient population
- No coronal plane deformity existed in this model
- Connective tissue of the animal may be different compared to human
- Adult spine, if attainable at all, would be different from children in terms of dimension and degenerative changes due to aging

Conclusion

In the dual growing rod technique:

- posterior distraction forces <u>are</u> transmitted as distractive forces to anterior column as evidenced by reduction in intra-discal pressure at two spinal levels.
- posterior distraction forces <u>are</u> distributed at multiple levels rather than delivered to the disc immediately adjacent to the foundation

Conclusion

 The distribution of loads at multiple levels may assist with curve control and may also affect the vertebral growth as well as maintaining sagittal alignment

Thank You

SAN DIEGO CENTER FOR SPINAL DISORDERS

