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 A titanium implant construct for spine 

growth modification has been FDA 

approved for early stage clinical trial 

for AIS 
 

 Early design showed staple construct 

(SS) caused curvatures in normal 

spines within 2 months 1 

 

• Growth plate histomorphometry indicated 

compression gradient 2 

 

 Disc wedging from intervertebral 

rotation due to implant insertion 

determined in vitro 3 

 

Background and Significance 

Immediate post-op      2 months  



 Finite element model (FEM) developed 

with biomechanical tests 

• Continuum model of annulus 4 

 FEM and tests correlated well for 

control motion segment (no implant)  

• Compared to compression tests 

 Addition of implant to FEM 

overestimated stiffness  

• FEM assumptions 

 Perfect bone-implant contact  

 No changes in orientation or disc 

stress due to implantation 

 Quantitative relationship between 

growth and compressive stress 

• Stokes et al 5,6 

 

Previous studies 

NZ



Purpose 
• Determine whether  
 

1.  Changes to selected FEM parameters improves 

 correlation with tests 

• Contact between implant and bone 

• Initial biomechanical gradients  
– Disc wedging due to implant insertion  

 

2.  Addition of a growth-stress relationship produces 

 asymmetric growth patterns 

• Compared to experimental histomorphometric results 

 



 3-D FEM from CT scan of T7-T8 porcine spine 

• Cortical, cancellous, end plates 7 

• Annulus fibrosus modeled using anisotropic 

hyperelastic material properties 4 

 

• Interface properties between bone-implant 
– Coefficient of friction varied from 0.1 – 0.3 

– Soft normal interaction property 8 

 

• Initial conditions due to implantation 
– 2 degree coronal plane tilt 

• Neutral axis central 

– With and without residual disc stress  

 

 

Methods – FEM Construction 

Coronal view, FEM, porcine 

spinal segment without implant 

Oblique view, FEM with implant 



Methods 

 FEM created in Hypermesh  

 Compression test simulated 

• Boundary conditions 

 Caudad nodes constrained in longitudinal 

axial direction 

• Few additional nodes constrained to avoid 

rigid body modes 

• Loads 

 Axial displacements applied 

Caudad nodes 

Cephalad nodes 

Solving 

 FEM imported to Abaqus (v6.8-2) 

 Nonlinear large deformation static analyses 

• Material and geometric nonlinearities 



 Linear growth model added 5,6,9 

– β = 1.2 MPa -1 

 
 

 

 Growth plates added to FEM 
 

 Initial baseline growth applied  

• In terms of temperature strain 
 

 Growth modulation strains calculated  

• Applied static compressive stress of 0.5 MPa 
 

 Iterations simulated 2 month post-op time 

 

Methods – Growth Model 

yyyym GG  

Growth plates 

Oblique view, FEM, spinal segment 

including growth regions and implant 

Sequential procedures for strain/growth increments 



Results – Load vs Displacement Curves 

Compressive load - displacement behavior 

 To compare L-d curves from FEM 

to biomechanical tests  

• Neutral zone (NZ) added 
 

 FEM with either friction or soft 

normal contact  

• Less stiff than perfect contact  

• Stiffer than experiments 
 

 Frictional contact 

•  Linear response  
 

 Soft contact  

• Nonlinear behavior 

• Better simulation of experiments 
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Results – Initial Conditions  

Load displacement curves from FEM with 

different initial conditions 

 Disc wedging of 2 degrees 
 

• Without residual disc 

compressive stresses  

 Did not affect stiffness 

 

• With residual disc stresses 

 Increased stiffness 

compared to both 

experiment and FEM with 

perfect contact conditions 
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(c) (d) 

(e) (f) 

(g) (h) 

Growth plot after two iterations, post-op 2 

months, showing maximum growth on 

contralateral side 
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Growth distribution across cephalad growth 

plate at end of two iterations 

 Asymmetric growth at 2 months  
• Growth reduced across coronal plane 

  

 

 Reduction in growth  
• Ipsilateral side reduced by 69% 

• Contralateral side by 20% 

Results – Growth 

 

(c) (d) 

(e) (f) 

(g) (h) 



Conclusions / Discussion 

Limitations 
 Current model: Rotational and combined loading validations required 

 FEM in general 

• Inability to model neutral zone (rigid body motion) 

• Large numbers of parameters affect results, careful application required 

 FEA used for parametric analyses and growth simulations 

• Within one type of implant  

• With consideration  of in vitro and in vivo tests 

 Bone-implant interfaces 

• Soft and friction both better simulated tests compared to perfect contact  

 Initial conditions 

• Disc wedging did not improve agreement with in vitro tests  

 Regardless of residual disc stresses 

 Growth modification  

• Asymmetric inhibition across coronal plane  

• Similar to pattern reported for growth plate histomorphometry 2 

 Greater reductions in growth predicted especially on ipsilateral side 
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