Scoliosis, Pectus, & Combined Deformity Modeling to Predict Functional Outcomes

Elizabeth Berdan, MD; Hanna Naegeli; Noelle Larson, MD; David Polly, Jr., MD; Charles Ledonio, MD; Daniel A. Saltzman, MD, PhD; David Nuckley, PhD

CHEST WALL & SPINAL DEFORMITY STUDY GROUP
UNIVERSITY OF MINNESOTA

ICEOS November 2011

Background

- Moderate scoliosis (greater than 30°)
 1 out of 300 children
- Pectus malformation1 out of 300-400 children
- While scoliosis and pectus deformities are the most common thoracic malformations in children the interrelationship of spine and chest wall is not understood.
- These malformations have been shown to result in decreased pulmonary function, lung development, pulmonary hypertension, right-sided heart failure, and possibly premature mortality.

Scoliosis

- Scoliosis is a sagittal plane spinal deformity that results in a curved and rotated spine.
- Spinal rotation in scoliosis affects the ribs by creating a decreased rib angle (and chest cavity space) on the convex side while the concave side of the curvature is larger.

Pectus Excavatum

• Pectus excavatum is a chondrosternal depression often resulting in compression and displacement of the heart.

Study Objective

- Model the thoracic volume of scoliosis, pectus and combined deformity in order to predict cardiopulmonary function.
- This requires multiple disciplines, thus our study section was formed.

Chest Wall &Spine Deformity Study Group University of Minnesota

University of Minnesota

Department of Orthopaedic Surgery Charles Gerald T. Ledonio, MD David W. Polly, Jr., MD

Department of Pediatric Surgery

Robert A. Acton, MD Donavan J. Hess, MD Daniel A. Saltzman, MD, PhD

Department of General Surgery

Elizabeth A. Berdan, MD

Department of Pediatric Pulmonology

Warren E. Regelmann, MD

Department of Physical Medicine & Rehabilitiation

David Nuckley, PhD Hanna Naegeli

Department of Pediatric Radiology

F. Glen Seidel, MD

Mayo Clinic

Department of Orthopaedic Surgery

A. Noelle Larson, MD

Methods

- Retrospective review of children with scoliotic and pectus thoracic deformities.
- A computational model matches the deformed spine and chest wall from 2D chest x-rays (lateral & AP)to compute the resulting thoracic volumetric deformity.
- We are initially validating this model by comparing the model predicted thoracic volume (from chest X-rays) with the thoracic volume measured from total thorax CT scans.

Model Validation

- Model development with 4 healthy adult CTs of the thorax.
- Tested on 4 cases (2 pectus and 2 scoliosis)

Figure A. Scoliosis

Figure B. Pectus Excavatum

Results

- Both scoliosis (Figure A.) and pectus excavatum (Figure B.) display thoracic volume decrease.
- The volumes measured for the scoliosis cases were 60.9 cm³ different (4%) between CT and chest X-rays.
- The pectus patients had a much higher volume, but remained fidelic within 4%.

Conclusions

- Our broader study is just beginning. This pilot study is promising.
- Using this model we will apply it to scoliosis, pectus and combined deformity patients.

Limitations

- Pilot study with small number of patients.
- The chest X-rays utilized in this retrospective study were likely obtained with some variation in patient positioning.

This study is funded by a grant from The Chest Wall and Spinal Deformity Research Foundation

