Early Onset Spinal Deformity: Growing Rods or VEPTR – How to decide?

John B. Emans, MD Children's Hospital, Harvard Medical School Boston, MA 02115 john.emans@childrens.harvard.edu

Disclosures:

- Conflicts of Interest:
 - Helped design VEPTR II
 - Royalties from VEPTR II
 - Consultant:
 - Synthes spine
 - Medtronics spine
- Off-Label devices discussed:
 - All pedicle screws in children and growing rods (and staples and tethers) are off-label
 - VEPTR is FDA approved for Thoracic Insufficiency syndrome in growing patients. HDE approval is required

Growing Rods or VEPTR:

- Are they really very different?
 - Both distraction based:
 - Skaggs classification useful:
 - Rib-based distraction
 - Spine-based distraction
 - Combinations
 - Both have same major disadvantage:
 - Repetitive surgical lengthening required
 - Distraction-bases Rx not very good for kyphosis

Growing Rods or VEPTR

- Same treatment goals in early onset deformity:
 - At maturity try to achieve:
 - Maximum
 - Spine length, flexibility
 - Thoracic function (volume, movement)
 - Lung growth
 - Minimum
 - Surgery
 - Complications
 - Hospitalizations, disability

Growing Rods or VEPTR

- The difficult decision is *when* to intervene surgically?
 - Use evolution of chest deformity as a guide to timing of first surgery?
 - Rationale:
 - Surgical intervention can usually correct/control worsened spine deformity.
 - Surgical intervention less effective for established chest deformity
 - The dilemma:
 - Don't wait to intervene the chest deformity may be too severe to reverse
 - Don't intervene too early may get spontaneous fusion beneath growing rods after ? years causing early termination of growth-friendly treatment.

Things we think we know: (maybe)

- Our EOS operations don't correct severe or established 3-D chest deformity
 - Goal is therefore not to let severe thoracic deformity occur or progress
 - When is this? How much is too much?
 - *Thorax shape more relevant than the Cobb angle*

GR or VEPTR for Early onset deformity

• *Factors to consider*, ways to decide

- *Etiology* of deformity
 - <u>Spine or chest</u> dominant or primary
- Associated:
 - Bone quality
 - Kyphosis
 - Rigidity of deformity
 - Soft tissue coverage
 - Complications of treatment

Growing Rods or VEPTR

Etiology of deformity

- Is the *spine the primary deforming force*?
- Is the *chest wall the primary deforming force?*
- Are the <u>chest and spine</u> both etiologic factors?

Early Onset Deformity. – etiology as a factor:

- <u>Chest wall is primary problem</u>
 - Massive rib fusions
 - Other *purely thoracogenic scoliosis*
 - Chest wall tumors
 - Esophageal atresia,
 - Multiple thoracotomies
 - Some congenital diaphragmatic hernias
 - *Expansion thoracostomy, VEPTR best choice*
 - 'Spine-only' treatment will be defeated by chest wall tether
- Thoracogenic scoliosis may need skin expanders, staged procedures, flaps,

GR or VEPTR - VEPTR and <u>expansion thoracostomy</u> for rib fusions and congenital scoliosis

GR or VEPTR? Thoracogenic Scoliosis after chest wall tumor

Spine and Chest are both etiologies

- Spine and chest wall *both etiologic factors*
 - Rib fusions with congenital scoliosis
 - *Expansion thoracostomy with VEPTR* or expansion thoracostomy with GR best choices
 - *Established, severe chest wall deformity plus severe spine deformity*
 - Severe windswept thorax
 - GR approaches primary spine problem
 - Is VEPTR any better?

GR or VEPTR Spine and chest are both etiologies

- 2 y.o with progressive curve, increasing nighttime O2 requirement
- Multiple unilateral rib fusions
- Vertebral bars
- <u>Note worsening</u> <u>'normal'</u> <u>hemithorax</u>

GR or VEPTR Spine and chest are both etiologies

- Early intervention for the sake of chest shape
 - Three thoracostomies
 - VEPTR
 - 'normal' side of chest improving slowly?

Age 11, PFT's 45%

Partial control of spine deformity, chest deformity

PA

38

GR or VEPTR Spine and chest are both etiologies Example: progression after in situ fusion

Curve Progression at Age 16 months

GR or VEPTR Spine and chest are both etiologies Age 2 - s/p in situ fusion age $6 \mod 6$

Curve Progression at Age 16 months VEPTR, expansion thoracostomy, prior fusion

- Two rib osteotomies
- One rib-to-rib device
- One rib-to-spine device

Bar growth – 4 yrs after first VEPTR

2003

5 cm thoracic spine growth
Nearly 2 cm growth of bars

Spine growth – 4 yrs after first VEPTR

- Continued growth 6 lengthenings
- One device exchange for growth

Age 13 – two years post menarchal- 11 years after first VEPTR

- PFT's 55%%
- Devices left in place.
- Thorax far from normal
- No fusion needed?

GR or VEPTR – Chest and Spine both a problem

- 3yo with progressive thoracic deformity
 - Congenital rib fusions
 - Multiple vertebral anomalies.
- VEPTR and expansion thoracostomies age 3

GR or VEPTR – Chest and Spine both a problem

- Multiple lengthenings
- Exchange x 2
- Age 14, mature
- Unhappy with waist asymmetry
- Active as cheerleader
- VEPTR removal, osteotomies, final fusion

GR or VEPTR – Chest and Spine both a problem

- *Final spine fusion easier with VEPTR*?
- Rib fusions, scarring expected
- Spontaneous spine fusions:
 - Below rod at lower end
 - In normally segmented part of curve
- <u>Far from easy after</u> <u>VEPTR</u>

GR or VEPTR? – <u>Spine</u> is the problem

- *Infantile idiopathic* scoliosis (normal segmentation)
 - Moderately severe deformity
 - (Spine still worse than chest deformity)
 - Dual Growing rods
 - Rationale for choice:
 - Chest wall, although deformed, is mobile.
 - Expansion thoracostomy, VEPTR, may stiffen chest wall?

Infantile idiopathic scoliosis, moderately severe rotational chest deformity – Age 5

Infantile Idiopathic Scoliosis, dual growing rods – earlier would have been preferable? – Age 5

Age 12, after 7 years of lengthening, stopped by spontaneous fusion. Osteotomies, definitive fusion

GR or VEPTR ? Infantile idiopathic Age 3, age 4 in brace, age 5 after casting

GR or VEPTR? More casting, bracing -Age 7, Age 9

GR or VEPTR – IIS casted until age 9 Preop Windswept chest. Note severe thoracic lordosis

GR or VEPTR? - Infantile idiopathic, Age 9

IIS - VEPTR first stage

Chest shape after first VEPTR?

- No change in occluded convex thorax after concave expansion thoracoplasty
- "Parasol procedure" with VEPTR planned for convex, collapsed side
- VEPTR rib attachments cut through at 3 weeks
 - Better to have had an additional load-sharing device?
 - No other rib attachments available.
- Converted to dual growing rods

VEPTR fixation lost. GR inserted. Spine under control, *chest irrevocably altered*.

After 3 years lengthening, Age 12. FEV1 65% Chest still windswept

Growing Rods or VEPTR Neuromuscular deformity – VEPTR or GR?

- High-tone ('CP')
 - Neither very good.
 Rarely indicated in 'CP' high tone
 - Personal opinion more trouble with rib drifting in 'CP'

- *Low-tone: SMA*, arthogryposis, myopathy
 - VEPTR directly treats the 'parasol' deformity
 - Multiple fixation points tandem connectors
 - Xrays better with VEPTR, but are the patients any better?
 - Minimal chest wall movement – breathing is all diaphragmatic, hence GR may be as good as VEPTR!

GR or VEPTR? 5 yo with SMA trach but not vent dependent

GR or VEPTR? SMA ages 5, 10, 12

GR or VEPTR – usefulness of tandem VEPTR II anchors to horizontalize parasol deformity?

GR or VEPTR - *Myelodysplasia* with collapsing kyphosis or scoliosis

- Age 5, thoracic level.
- Worsening deformity, impending skin breakdown

GR or VEPTR - *Myelodysplasia* with collapsing kyphosis or scoliosis

- VEPTR II rib to pelvis.
 - Better able to maintain distraction, deformity control without involving dysplastic lower spine
 - Control of spine without instrumentation of spine
 - Tandem rib connectors useful.
 - Distribution of force
 - Resistant to pull out

GR or VEPTR in Infection

- Infection VEPTR or GR?
 - Either is a good rescue for infection in the other!
 - Soft tissues a critical component

- Implant removal/retention with deep infection?
 - Depends upon
 - Extent
 - Duration after index procedure
 - Skin, soft tissues

GR or VEPTR in Infection Fetal alcohol syndrome Complex congenital vertebral anatomy - age 6

GR or VEPTR in Infection Fetal alcohol syndrome – long segment of spine

GR or VEPTR in Infection Fetal alcohol syndrome

GR or VEPTR? – <u>Upper thoracic kyphosis</u>

• <u>*Kyphosis (*upper thoracic) problematic for both growing</u> rods and VEPTR

- Multiple factors:
 - Weak paraspinals
 - Junctional stresses above stiff segment
 - GR Disruption of posterior elements.
 - VEPTR lack of direct sagittal spine control
 - Both GR and VEPTR distraction-based

GR or VEPTR> – collapsing deformity, arthrogryposis age 4. Coronal deformity controlled

GR or VEPTR? arthrogryposis – age 4 to 8 –initial control then progressive PJK

VEPTR in arthrogryposis – poor control proximal kyphosis.

- Cervico thoracic junction collapsed further into kyphosis, rotating around VEPTR attachments
- Distraction based systems poor for upper thoracic kyphosis
- GR better than VEPTR?
 - Can extend more proximally with GR

GR or VEPTR for upper thoracic kyphosis? 7 yo with familial dysautonomia

GR or VEPTR for upper thoracic kyphosis? with familial dysautonomia age 7, 8, 16

GR or VEPTR for upper thoracic kyphosis - neither is perfect - GR has some advantages

• Strategies:

- Leave some kyphosis
- Pre-op halo gravity traction may facilitate device insertion by diminishing kyphosis
 - Tendency to reoccur
- Growing rods can extend more cephalad than VEPTR - ? Past the kyphosis?

- GR preferable:
 - More cephalad extent possible
 - More contouring options
 - Direct control of spine

GR or VEPTR - Bone dysplasias

- Bone dysplasias
 - Spine or ribs better bone for anchor points?
 - Small soft vertebra? VEPTR may be preferable
 - Spinal stenosis or hypoplastic pedicles? Prior laminectomy? VEPTR may have advantage
 - Beware waiting too long to establish contol over curves in spinal stenosis neurologic risk with progression, correction.

Spondyloepiphyseal dysplasia

- Age 14 mos.
 - C1-C2 fusion
 - Growing rod for scoliosis, kyphosis
- Age 30 months proximal disengagement
- Age 10 paraplegia following hip osteotomies, epidural post-op. Slow resolution

Pre - traction

Halo gravity for 7 weeks

Post VEPTR

- Kyphosis well controlled
- One rib sleeve bent to accommodate kyphosis

Early Onset Deformity. – etiology as a factor:

- Bone dysplasias:
 - If upper thoracic *kyphosis*, GR has an advantage over VEPTR
 - GR can be extended as far cephalad as needed

Campomelic Dysplasia

- Vent dependent
- Rapid
 progression after
 6 months
- Age 18 months

 minimal
 deformity

Age 30 months – severe kyphosis

Age 30 months – severe kyphosis

- Age 30 months severe kyphosis – stiff
- GR or VEPTR?
- GR enables more cephalad purchase

Age 34 months – growing rods, extending to C7 with sublaminar cable at C7

GR or VEPTR – Osteopenia in Early Onset Deformity

- <u>Osteopenia</u>, poor bone quality
 - VEPTR may have an advantage?
 - ?more 'give' in ribs than spine?
 - Experience with osteogenesis imperfecta?
 - <u>GR allows staged anchor placement</u>

VEPTR or GR? Osteopenia and kyphosis

- 5 yo with recurrent TEF
- Failed VEPTR with severe osteopenia
- Progressive scoliosis
- Rigid upper thoracic kyphosis

VEPTR or GR? Osteopenia and kyphosis: Insert anchors, 2mos, apply H-G tx, 1 1/2 mos

VEPTR or GR? Osteopenia and kyphosis Age 6, 8

4 y.o. with Ehlers Danlos variant

- Worsening deformity
- Recurrent breakdown when attempting to sit or with a brace
- Severe osteopenia, recurrent fractures
- Increasing respiratory distress (secondary TIS)

Ehlers Danlos

GR or VEPTR – Complications?

- Routine problems are different:
 - GR rod fractures
 - VEPTR rib anchor drift
- Both:
 - Infection
 - Scarring
 - Repetitive surgeries
 - Anesthetics
 - Psychological stress

- Serious or growth ending complications:
 - VEPTR chest wall scarring, fusion
 - GR spontaneous fusion(VEPTR also?)
GR or VEPTR - complications

318

29.7 cm

e Rendering No

- <u>GR growth stopping</u> <u>complication</u>
 - Lengthening may not be possible indefinitely
- Skaggs and GSSG data:

8yo with spontaneous posterior fusion after growing rods started at age 2

<u>*GR or VEPTR – complications*</u> Recurrent rib fusion after thoracostomy

GR or VEPTR - complications Inadvertent fusion of scapula to ribs:

2 patients with solid fusion of scapula to ribs Numerous with limited scapulothoracic function

GR or VEPTR - Final fusion easier?

• GR and VEPTR:

- Spontaneous stabilization may have occurred by end of growth
 - <u>No fusion</u> may be needed if:
 - Modest deformity
 - Implants not troublesome
 - Likely underlying fusion

- Conversion to final instrumented fusion?
 - GR challenging conversion
 - Scar, spontaneous fusions, distorted anatomy
 - VEPTR easier conversion?
 - Spine "untouched"??
 - Spine spontaneously fused, esp lower spine anchor area
 - Rib fusions beneath device

VEPTR or Growing Rods? How to choose between GR and VEPTR:

	Growing Rods	VEPTR
Spine growth preservation	+	+
Chest deformity correction	+/-	++
Ease of use, familiarity	+	-
Multiple ops	\checkmark	\checkmark
Final fusion needed	+/-	+/-
Complication which limits distraction	Fusion underneath rod	Chest wall stiffness, rib re- fusions
Solution to complication?	Early fusion	Repeat thoracostomy
Common device problems, failures	Rods break	Rib attachments drift
Upper thoracic kyphosis	Better	Poor
Osteopenia	Poor	Poor

Strong indications for VEPTR:

- Primary Chest wall problem
 - Massive rib fusions
 - Thoracogenic scoliosis
- Failed Growing rods
 - Infected spine anchors
- Poor spine anchors
 - Bone dysplasia with spinal stenosis
 - Spina bifida

Strong indications for growing rods

- Primary spine deformity with lesser, flexible chest deformity
- Normally segmented, unscarred chest wall
- High thoracic kyphosis
 - (GR/local fusion can extend into the cervical spine if needed)