Limited Anterior Spinal Fusion: An Effective Strategy in Controlling Progressive Early Onset Scoliosis

Burt Yaszay¹ Shoji Seki² Carrie E. Bartley¹Peter O. Newton¹

- 1. Rady Children's Hospital, San Diego, CA
 - 2. University of Toyama, Toyama, Japan

Disclosure statement

• Burt Yaszay (a,b,d,e) DePuy Synthes Spine;

(a,b) Ellipse; (a,b) K2M; (a) KCI;

(b) Medtronic (e) OrthoPediatrics;

Shoji Seki
 No Relationships

Carrie Bartley No Relationships

• Peter Newton (a,b,d,e) DePuy Spine; (a) Axial

Biotech; (a) EOS;(c) Nuvasive

- a. Grants/Research Support
- b. Consultant
- c. Stock/Shareholder
- d. Speakers' Bureau
- e. Other Financial Support

Introduction

• Early Onset Scoliosis → challenge

Treatment Goals

- Control spinal deformity
- Maximize spinal (chest)growth
- (?) maximize/maintain lung fxn
- Minimize treatment morbidity

Treatment Options

- Non-surgical Management
 - Brace
 - Casting
- Surgical Management
 - Growing Rods, VEPTR
 - Shilla
 - Limited ASF fusion

Limited Fusion

Thoracolumbar curves

• Limit fusion of thoracic vertebra

• Temporizing until long posterior fusion can be done

Objectives

• The purpose of the current study was to evaluate the utility of limited ASF in controlling EOS (and postponing a definitive management).

Materials and Methods

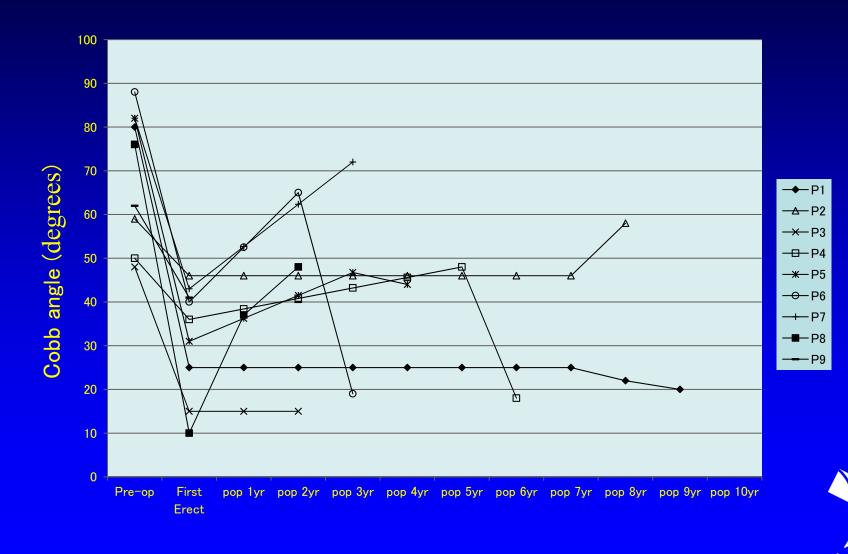
Retrospective review

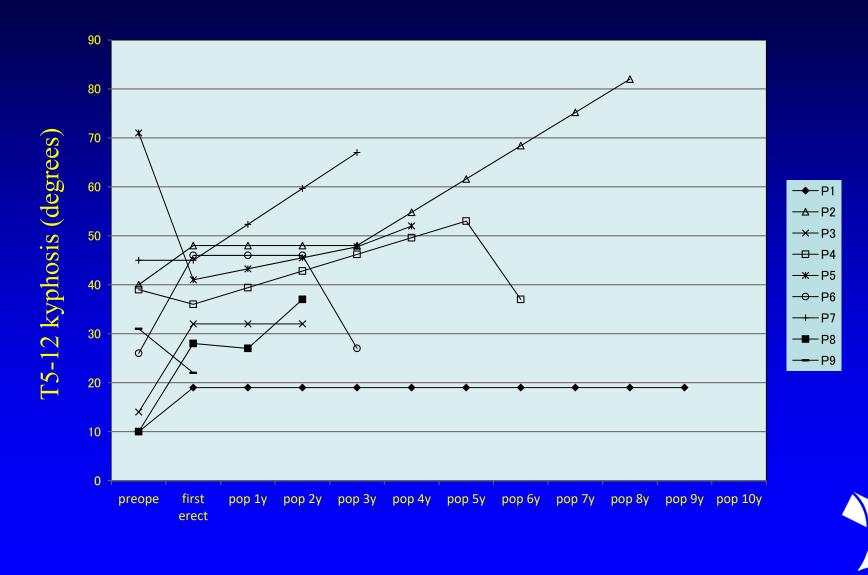
EOS pt with limited ASF

• Minimum f/u - 2 yr

Surgical and Radiographic data was recorded

Results

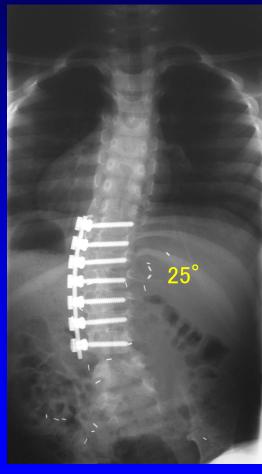

- 9 patients identified (4 M, 5 F)
- Mean age was 6.6 years (range 2–9 yrs).
- Average f/u was 4.5 years (range 2–9 yrs).
- Diagnoses:
 - neuromuscular scoliosis (6)
 - neurofibromatosis (2)
 - congenital scoliosis (1).


Results

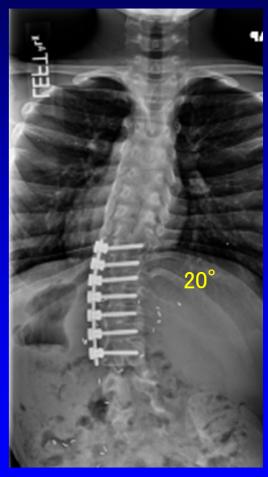
	preoperation	1st erect	postoperation (final follow-up)
mean Cobb angle	69 ± 16°	32 ± 13°	46 ± 18°
T5-12 kyphosis	27 ± 13°	31 ± 13°	50 ± 47°
average correction rate (%)		51%	32%
average number of fused levels		6 ± 1	
EBL		278 ± 128cc	
subsequent PSF after initial ASF (N)		2/9 (22%)	
Average time between initial ASF and subsequent PSF		3.7yrs	

Coronal Cobb angle

T5-12 kyphosis.

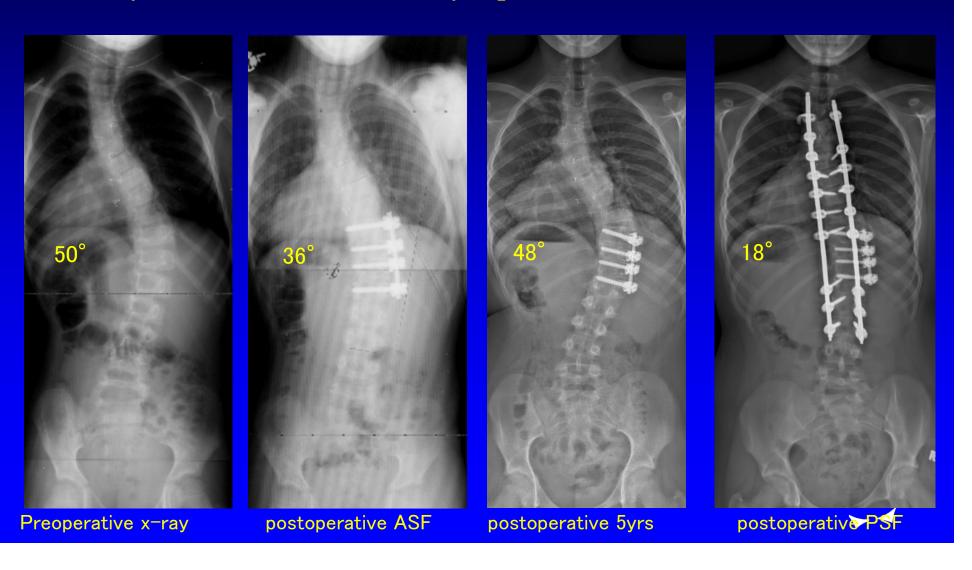

Case 1

Two year old male who underwent an ASF from T9 to L3 who is 9yrs


post-op and yet to need a definitive PSF.

Preoperative x-ray

postoperative 2yrs



postoperative 9yrs

Case 2

Six year old patient with neuromuscular scoliosis who was fused anteriorly and underwent a PSF 5yrs post-ASF.

Conclusion

• For select EOS patients (NM), a short ASF may be considered as a means of slowing curve progression and postponing a definitive fusion.

• Compared to distraction based techniques this approach has the potential to avoid the complications

with repeated lengthening

• 9 patients → 75 lengthening avoided

• Be aware of sagittal profile