Use of VEPTR for Treatment of Congenital Scoliosis without Fused Ribs

Jeffrey R. Sawyer MD

Associate Professor of Orthopaedics
Campbell Clinic
Memphis, Tennessee USA

Co-Authors

Robert F. Murphy, MD
Alice Moisan, RN
Derek M. Kelly, MD
William C. Warner, Jr., MD

Disclosures

Murphy AAOS

Moisan None

Kelly Elsevier, POSNA

Warner Elsevier, COS

Sawyer Elsevier, AAOS, POSNA

Congenital scoliosis (CS) variable morphology

spectrum

severe cases - thoracic insufficiency

Congenital scoliosis (CS) variable morphology

spectrum

severe cases - thoracic insufficiency

Congenital scoliosis treatment:

observation

casting

growing rods

Shilla

VEPTR

VEPTR effective:

wide variety of conditions/deformities

congenital scoliosis with fused ribs

The Treatment of Spine and Chest Wall Deformities With Fused Ribs by Expansion Thoracostomy and Insertion of Vertical Expandable Prosthetic Titanium Rib

Growth of Thoracic Spine and Improvement of Lung Volumes

John B. Emans, MD,* Jean François Caubet, MD,‡ Claudia L. Ordonez, MD,† Edward Y. Lee, MD, MPH,§ and Michelle Ciarlo, BS‡

No studies to date specifically evaluated VEPTR in CS patients w/o fused ribs.

Purpose

Characterize the use of VEPTR in patients with CS without fused ribs.

Methods

CWSD database – CS w/o fused ribs

Demographic information

Expansions/lengthenings

Complications – stratified disease *vs* device treatment plan alteration

Demographics

24 patients (12M, 12F)

Implantation age: 5.6 ± 3.4 years

mean follow-up: 4.2 years

mean # procedures: 9.3 ± 6.0

mean # expansions: 6.6 ± 4.6

Classification

Offiah *et al* (2010) Am. J. Genetics Kawakami *et al* (2009) Spine

Deformity

Multiple Complex (bar + hemi): 17 (71%)

Single: 3

Generalized: 1

Multiple simple: 1

Abnormal segmentation: 1

Radiographic Parameters

Scoliosis

Kyphosis

AP/Lat Spine height (T1-S1)

Expected T1-T12 spine height

Preoperative

 \downarrow

Post-implant

Final Follow-Up

Coronal Cobb Angle

Preoperative

 \bigvee

Postoperative

 \downarrow

Final Follow-Up

70°

 \downarrow

 55° (p = 0.0001)

 \downarrow

54° (p < 0.0001)

Sagittal Cobb Angle (Kyphosis)

Preoperative

 \downarrow

Postoperative

Final Follow-Up

37°

 \downarrow

 41° (p = 0.31)

 \downarrow

 47° (p = 0.6)

Lateral Thoracic Height (T1-T12)

Preoperative

Postoperative

15.8cm (p = 0.026)

17.4cm (p = 0.04)

15.3cm

Final Follow-Up

Complications

15/24 patients (63%)

Total of 41 complications

Average 2.8, range 1-12

Most common:

infection (8)
wound dehiscence (8)
device migration (8)

Disease Related Complications

Grade I: can be treated as an outpatient.

Grade II: requires hospitalization.

Grade III: alters the treatment plan.

Disease Related Complications

Disease Related (n=13, 31%)		
Grade I (outpatient)	5	33%
Grade II (hospital)	6	50%
Grade III (Δ plan)	2	27%

Device Related Complications

Grade I: does not require return to OR.

Grade II: unplanned return to OR.

A: single trip to OR

IB: multiple trips to OR

Grade III: alters the treatment plan.

Device Related Complications

Device Related (n=28, 69%)		
Grade I (no OR)	13	46%
Grade IIA (1 OR)	8	29%
Grade IIB (> 1 OR)	3	11%
Grade III (Δ plan)	4	14%

Expected Height

Eur Spine J (2012) 21:64-70 DOI 10.1007/s00586-011-1983-3

REVIEW ARTICLE

The growing spine: how spinal deformities influence normal spine and thoracic cage growth

Alain Dimeglio · Federico Canavese

Mean height gain: 2.4 cm

Expected height gain: 4.3 cm

% height gain: 79

Conclusions

VEPTR is effective in correcting and maintaining scoliosis with improved thoracic height.

Post- implantation kyphosis a concern.

Complications are similar to other studies.

New classification systems are helpful.

Thank You

