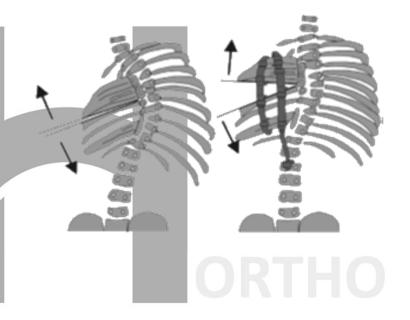
Prosthetic Rib Wound Complication Risk Stratification

Richard Campbell, Patrick Cahill, MD, Diane
Hartman, BSN, Keith Baldwin, MD
The Children's Hospital of Philadelphia
Perelman School of Medicine at University of Pennsylvania


Prosthetic Rib

Mechanism:

- Devices are attached vertically to proximal and distal ribs.
 - Sometimes with pelvis or spinal fixation
- Devices are expanded every 6-9 months until skeletal maturity.
- Device removal and spine fusion once skeletal maturity is reached

Effects:

- Separates ribs
- Straightens the spine via torque applied through ribs.
- Increases thoracic volume

Prosthetic Rib Implant Wound Complications

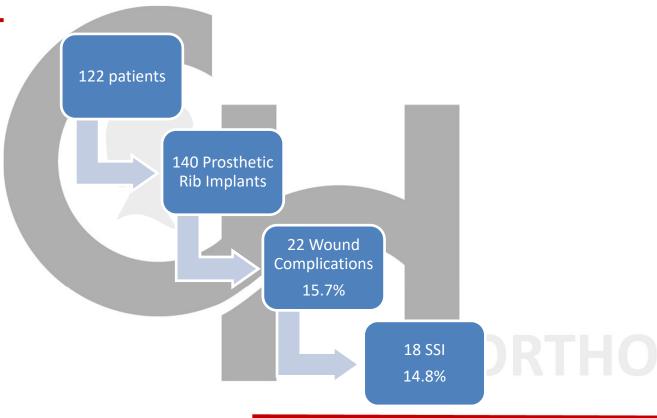
- Prosthetic Rib treatment has a significant wound complication rate, on average 22% per patient, and 3% per surgery.
 - Growing Rod Construct infection rate: 18.4%
 per patient
- Prosthetic Rib implantation have a higher infection rate per operation than other Prosthetic Rib procedures.

Effects of Wound Complications

- Increased reoperations
- Longer hospitalization
 - Physiological effects: Due to rehospitalization and operations.
- Increased costs: \$12,500+ per spine surgery complications.

Study Design

- Single-center retrospective analysis of prospective institutional safety registry queried from Jan. 2011 to Sept. 2015
- Restricted to only Prosthetic Rib implant procedures.
- Outcome variable: wound complications resulting in reoperation.
- Inclusion in multivariate analysis dependent on significance (p< 0.1) in univariate analysis.



Patient Descriptive

- 122 Patients
- Mean age: 5 years, 2 months
- 54.3% Males 45.7% Female
- 60.7% Caucasian, 15.7% African American, 3.6%
 Asian, 20% Other
 - -15% Hispanic
- 62.9% Neuromuscular/Syndromic etiology

Results

Statistical Analysis

Univariate Analysis

- 1. Male gender
- 2. Diapered patient with lower back incision
- 3. Bilateral procedure
- 4. More than 3 incisions
- 5. Left iliac incision
- 6. Right iliac incision
- 7. Patient age ≤ 4
- 8. Operative time > 150 mins
- 9. Hospital length of stay

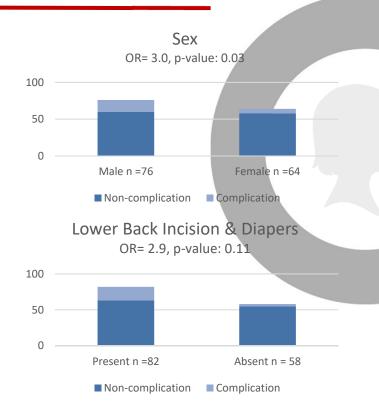
9

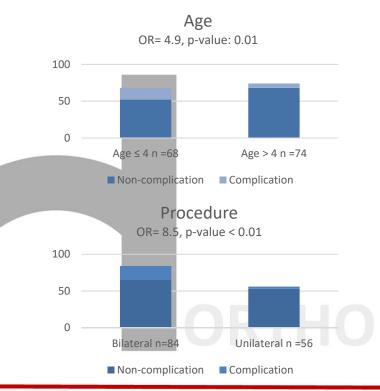
Multivariate Analysis

- 1. Patient age ≤ 4 , OR= 4.9 (1.5-15.4); p value 0.007
- 2. Male gender, OR= 3.0 (1.0-9.1); p = 0.05
- 3. Lower Back Incision & Diapers, OR= 2.9 (.76-11.64); p value 0.11
- 4. Bilateral procedure, OR= 8.5 (2.0-36.3); p = 0.004

Parameters Investigated

Significant


- 1. Patient age
- 2. Male gender
- 3. Iliac incision with diaper use
- 4. Bilateral procedure


Non-significant

	1.	Race	20.	BMI < 15
	2.	Ethnicity	21.	BMI < 15 and non-ambulatory status
	3.	International Patient	22.	BMI > 30
	4.	Non-English speaking parents	23.	ASA Classification
	5.	Neuromuscular or Syndromic Etiology	24.	Low Weight (<5 percentile for age)
	6.	Cobb Angle	25.	Failure to Thrive Diagnosis
	7.	Developmental Delay	26.	Neuromuscular etiology and Low Weight
	8.	Developmental Delay and Non-ambulato	ory 27.	G-Tube feeding
	9.	Developmental Delay with diaper use	28.	G-tube and Tracheostomy present
	10.	Hospital Length of Stay	29.	Number of incisions
	11.	PICU stay and length	30.	Left iliac incision
	12.	Instrument Uncover to incision time	31.	Right iliac incision
	13.	Instrument Uncover to closure time	32.	Midline Spine Incision
4	14.	Tracheostomy present	33.	Operative Time
	15.	Tracheostomy with upper back incision	34.	Current MRSA colonization
	16.	Neurogenic Bladder	35.	MRSA colonization and Low weight
	17.	Diapered Patient	36.	MRSA History
	18.	Non-ambulatory Status	37.	Previous SSI
	19.	Non-ambulatory with Diaper use	38.	Previous SSI within a year

Predictive Risk Factors

Potential Implications:

- Patient age has been demonstrated as a risk factor for increased complications in multiple Prosthetic Rib specific studies.
 - Special precautions should be taken with infants.
- Similarly, pelvic fixation and incontinence have both independently been associated with spine surgery complications.
 - Wound monitoring in diapered patients with incisions over the iliac region should be increased.
- The use of more aggressive prophylactic treatment may be warranted in patients with multiple risk factors.

Conclusion

- We present a wound complication risk stratification model for Prosthetic Rib implant surgery.
- Multiple pre- and intra-operative factors were found to be predictive of postsurgical wound complication.
- This tool can improve patient counseling and assist in identifying high risk patients in need of additional prophylaxis and post-op monitoring.

References

- Campbell, Robert M.,, Jr, Smith, M. D., Mayes, T. C., Mangos, J. A., et al. (2003). The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. *Journal of Bone and Joint Surgery*, 85(3), 399-408.
- Karlin, J. G., Roth, M. K., Patil, V., Cordell, D., Trevino, H., Simmons, J., Joshi, A. P. (2014). Management of thoracic insufficiency syndrome in patients with jarcho-levin syndrome using Prosthetic Ribs (vertical expandable prosthetic titanium ribs). *The Journal of Bone and Joint Surgery. American Volume, 96*(21), e181.
- Campbell RM, Smith MD, Mayes TE, Mangos J, Willey-Courand DB, Kose N, et al. (2003). The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am, 85(A), 399–408.
- Campbell, Robert M. "About Thoracic Insufficiency Syndrome." *The Children's Hospital of Philadelphia*. CTIS, 31 Mar. 2013. Web. 20 Aug. 2016.
- Andrew J. Pugely CTM, Yubo Gao, Ryan Ilgenfritz, and Stuart L. Weinstein. The Incidence and Risk Factors for Short-term Morbidity and Mortality in Pediatric Deformity Spinal Surgery: An Analysis of the NSQIP Pediatric Database. SPINE 2014;39:1225-34.
- Idyadhar V. Upasani PEM, John B. Emans, John T. Smith, Randal R. Betz, John M. Flynn, Michael P. Glotzbecker, and Children's Spine Study Group. Prosthetic Rib Implantation After Age 3 is Associated With Similar Radiographic Outcomes With Fewer Complications. *J Pediatr Orthop* 2016;36:219-25.
- Anucha Apisarnthanarak MJ, Brian M.Waterman, Cathy M. Carroll, Robert Bernardi and Victoria J. Fraser. Risk Factors for Spinal Surgical-Site Infections in a Community Hospital: A Case-Control Study. Infection Control and Hospital Epidemiology 2003;24:31-6.

