

Safe Parameters for Utilizing Magnetic Growth Rods in Patients with a Vagal Nerve Stimulator

Michael J. Elliott, MD; Jesua Law, DO Valley Children's Hospital, Madera Calif.

Valley Children's | HOSPITAL | MEDICAL GROUP | HOMECARE | FOUNDATION

Disclosures

Michael J. Elliott---None

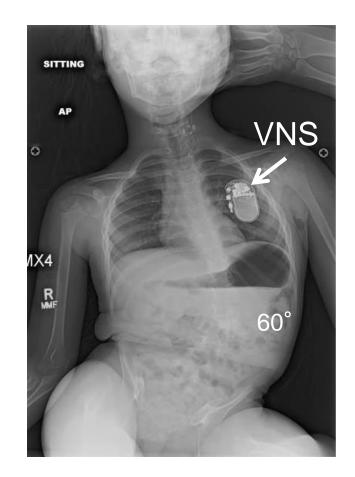
Jesua Law---None

Background

- Early onset scoliosis has high risk of progression^{1,2}
- Severe curves lead to restrictive lung disease^{3–6}
- Surgical treatment is with growing rods which require additional surgery for lengthening^{7–9}
- Complications are common with increasing lengthening surgeries^{10–13}

Background

- External magnets are used to control devices that use to require surgery. Examples: vagal nerve stimulator (VNS) and pacemakers^{14,15}
- Magnetic controlled growing rods use a similar technology 16–18
- External Remote Control (ERC) generates an magnetic field to lengthen the device

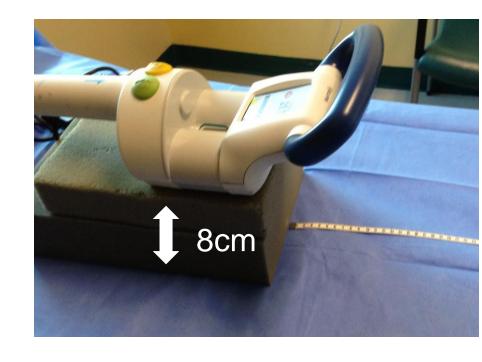


Purpose

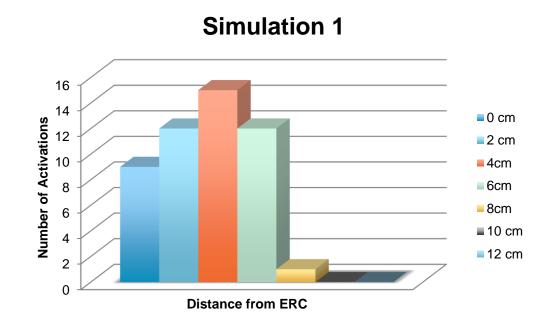
 To determine if the magnetic field from the ERC for Magic rods will inadvertently activate a VNS device.

 Determine if parameters exist for the use of the Magic rod ERC in the presence of a VNS device

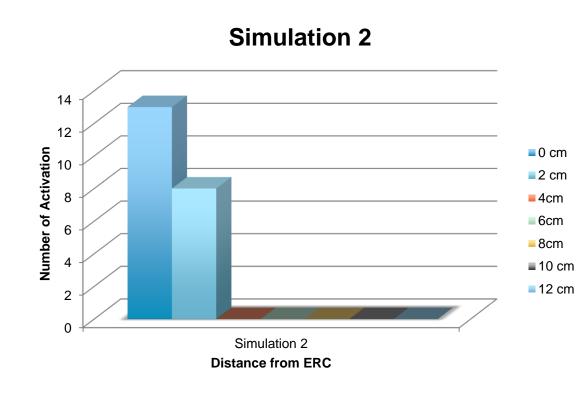
Materials & Methods Simulation 1


- VNS placed adjacent to ERC
- ERC activated for 2-28 sec
- 2 sec activation correlates to .3mm lengthening
- Distance from VNS to ERC increased at 2cm increments (2-12cm)
- VNS interrogated for activation

Materials & Methods Simulation 2


- ERC elevated on 8cm foam
- ERC activated for 2-28 sec
- Distance from VNS to ERC increased at 2cm increments (2-12cm)
- VNS interrogated for activation

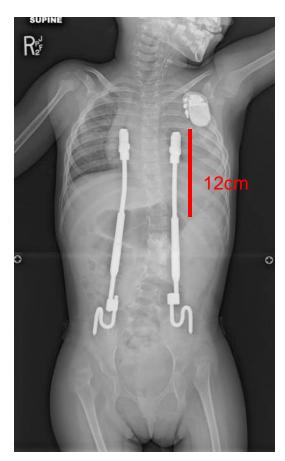
Results Simulation 1


- 43% activation rate at 0cm
- 71% activation rate at 4cm
- 5% Activation rate at 8cm
- 0% Activation rate at > 10cm

Results Simulation 2 (ERC on 8cm block)

- 73% activation rate at 0cm
- 38% activation rate at 2cm
- 0% Activation rate at 4cm
- 0% Activation rate at > 4cm

Conclusion



- The ERC can activate a VNS device
- Safe parameters are:
 - Greater 8cm chest thickness
 - Actuator > 4cm from VNS device

Conclusion Case Example

- No Activations
- Lengthening X3
- VNS > 8 cm anterior
- VNS > 4cm distal

References

- 1. Gillingham BL, Fan R a, Akbarnia B a. Early onset idiopathic scoliosis. *J Am Acad Orthop Surg.* 2006;14(2):101-112.
- 2. Fernandes P, Weinstein SL. Natural history of early onset scoliosis. J Bone Jt Surgery-American Vol. 2007;89A(1):21-33.
- 3. Phillips JH, Knapp DR, Herrera-Soto J. Mortality and Morbidity in Early-Onset Scoliosis Surgery. *Spine (Phila Pa 1976)*. 2013;38(4):324-327
- 4. Redding GJ. Early onset scoliosis: A pulmonary perspective. *Spine Deform.* 2014;2(6):425-429. doi:10.1016/j.jspd.2014.
- 5. Redding GJ, Mayer OH. Structure-respiration function relationships before and after surgical treatment of early-onset scoliosis. In: *Clinical Orthopaedics and Related Research.* Vol 469.; 2011:1330-1334.
- Redding G, Song K, Inscore S, Effmann E, Campbell R. Lung function asymmetry in children with congenital and infantile scoliosis. *Spine J.* 2008;8(4):639-644.
- 7. El-Hawary R, Akbarnia BA, Skaggs DL, et al. Early onset scoliosis: modern treatment and results. Spine Deform. 2015;3(2):e67.
- 8. Sturm PF, Anadio JM, Dede O. Recent Advances in the Management of Early Onset Scoliosis. *Orthop Clin North Am.* 2014;45(4):501-514.
- 9. Thompson GH, Akbarnia BA, Campbell RM. Growing Rod Techniques in Early-Onset Scoliosis. *J Pediatr Orthop.* 2007;27(3):354-361.
- 10. Akbarnia B a, Breakwell LM, Marks DS, et al. Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. *Spine (Phila Pa 1976)*. 2008;33(9):984-990.
- 11. Akbarnia BA, Emans JB. Complications of Growth-Sparing Surgery in Early Onset Scoliosis. *Spine (Phila Pa 1976)*. 2010;35(25):2193-2204.
- 12. Bess S, Akbarnia BA, Thompson GH, et al. Complications of Growing-Rod Treatment for Early-Onset Scoliosis. *J Bone Jt Surgery-American Vol.* 2010;92(15):2533-2543.
- 13. Watanabe K, Uno K, Suzuki T, et al. Risk factors for complications associated with growing-rod surgery for early-onset scoliosis. *Spine (Phila Pa 1976)*. 2013;38(8):E464-8.
- 14. Fisher RS, Eggleston KS, Wright CW. Vagus nerve stimulation magnet activation for seizures: a critical review. *Acta Neurol Scand.* 2015;131(1):1-8
- 15. Tan K-A, Sewell MD, Clarke AJ, et al. Recommendations for Lengthening of Magnetically Controlled Growing Rods in Children With Pacemakers. *J Pediatr Orthop.* 2017;37(4):e250-e254.
- 16. La Rosa G, Oggiano L, Ruzzini L. Magnetically Controlled Growing Rods for the Management of Early-onset Scoliosis. *J Pediatr Orthop.* 2017;37(2):79-85.
- 17. Rushton PRP, Siddique I, Crawford R, Birch N, Gibson MJ, Hutton MJ. Magnetically controlled growing rods in the treatment of early-onset scoliosis. *Bone Joint J.* 2017;99-B(6):708-713.
- 18. Su AW, Milbrandt TA, Larson AN. Magnetic Expansion Control System Achieves Cost Savings Compared to Traditional Growth Rods: An Economic Analysis Model. *Spine (Phila Pa 1976)*. 2015;40(23):1851-1856.