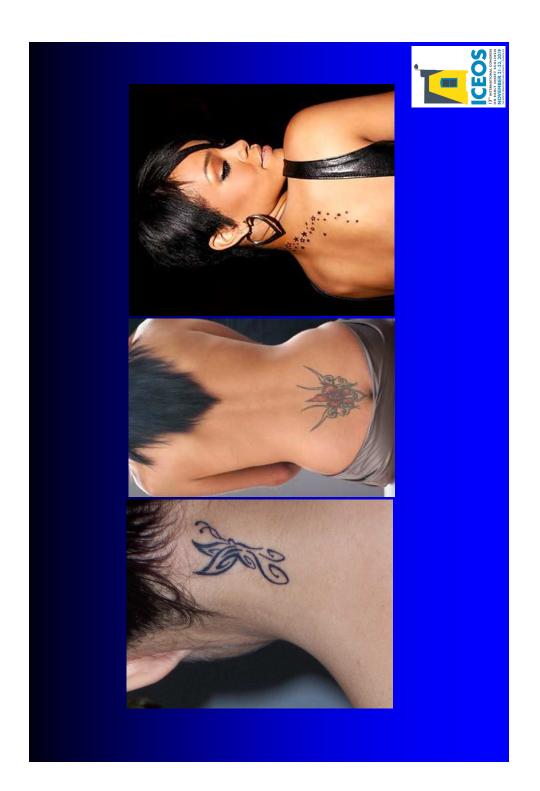
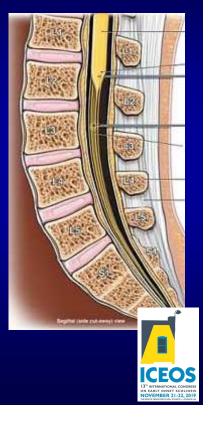
Tethered spinal cord and EOS: When to treat and when to watch?


Richard C. E. Anderson, M.D.

Disclosures up to date



Pathophysiology: Tethered Cord Syndrome

- Relationship between spinal cord and vertebral column changes during development
- Conus lies at approximately:
 - Coccyx 30mm embryo
 - L2-3 Birth
 - -L1-2

1 years

Pathophysiology: Tethered Cord Syndrome

- Causes neurological impairment by mechanically anchoring the spinal cord at the site of the cord's fusion with the lesion
- Leads to traction on the spinal cord with resultant relative ischemia
- If surgery is not performed, neurological deficits frequently are progressive (30-40%)
- Once a neurological deficit develops, it is often irreversible

Why be concerned about TSC with EOS?

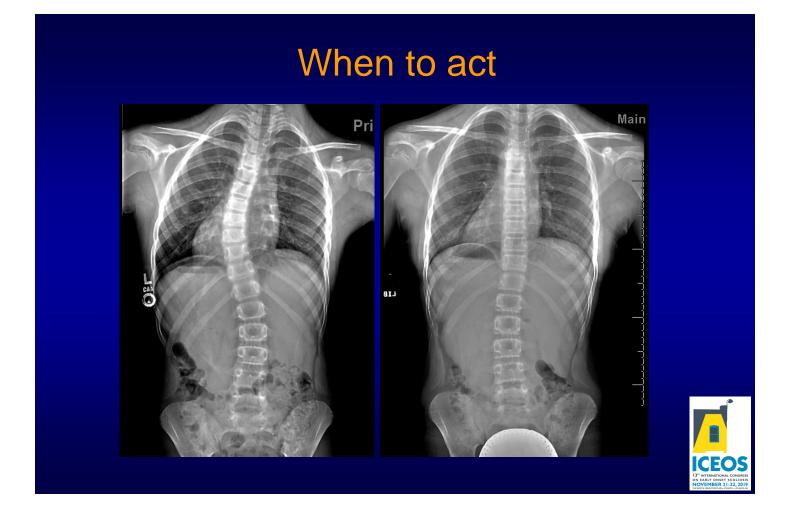
- Intraspinal anomalies seen in 20-50% of children with congenital scoliosis
- TSC release can delay the progression of scoliosis
- Deformity correction in the setting of untreated TSC may be problematic
 - Neurological injury
 - Unreliability or loss of IOM signals limiting correction

Table 2. Intraspinal anomalies				
Serial no.	Intraspinal anomaly	No. of patients (56/119)		
1	Tethered cord and low conus	27 (48.2)		
2	Diastematomyelia	18 (32.1)		
3	Syringomyelia	17 (30.3)		
4	Arnold Chiari malformation	11 (19.6)		
5	Intradural cyst	1 (1.7)		
6	Intradural lipoma	2 (3.5)		
Values are presented as percent (number).				

35.7% patients (20/56) had multiple intraspinal abnormalities.

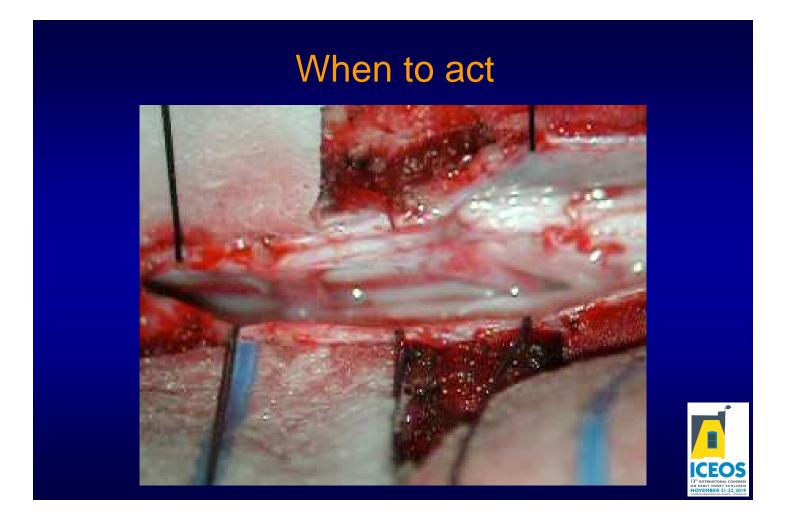
Gupta et al (2016) Asian Spine J

When to act


- Clear TSC with low lying conus:
 - Spinal cord lipomas
 - Split cord malformations
 - Symptomatic myelomeningoceles
 - Dermal sinus tracts
 - Others

When to act

- 6 year old girl presented with scoliosis
- Back pain
- No skin lesions
- Neuro intact
- Underwent TSC release



When to act

 3 year old girl with progressive scoliosis and hairy patch in thoracic region

Effect of TSC release on scoliosis

- Bowman/McLone study:
 - 36pts, 7yr follow-up
 - Myelo only
 - 33% progression at 2 years
 - 66% progression at 7 years (36% fusion)
- Pierz study:
 - 21 pts, 5yr f/u
 - 57% progression
- Hassani study:
 - 20 pts, 4yr f/u
 - 60% progression (50% fusion)

- Newton study:
 - 15pts (10 TSC)
 - 47% progression
- Chern study:
 - 14pts
 - All tight filum
 - 64% progression (36% fusion)

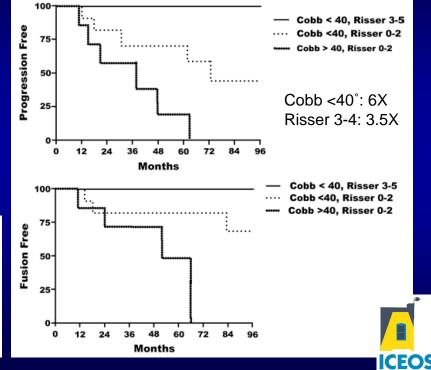

Effect of TSC release on scoliosis

TABLE 2: Summary of patient demographics, symptomatology, and scoliosis measurements*

Variable	Value
demographics	
mean age (yrs)	8.9 ± 3
male	16 (59)
skeletal maturity at TCS	
Risser Grades 0–2	17 (63)
Risser Grades 3–5	10 (37)
cause of TCS	
postmyelomeningocele repair	14 (52)
fatty filum	5 (18.5)
lipomeningocele	3 (11)
diastematomyelia	2 (7.4)
arthrogryposis	1 (3.7)
lipomyelomeningocele w/ occult dysraphism	1 (3.7)
imperforate anus w/ S-2 hemivertebrae	1 (3.7)

TABLE 3: Five-year incidence rate of radiological progression and subsequent fusion in 4 subgroups of patients with TCS-associated spinal deformity

Cobb An Risser Gra	•	% w/ Radiologica Progression	al % w/ Subsequent Fusion
<40°/3-	-5 8	0	0
<40°/0-	-2 11	54	27
>40°/3-	-5 2	50	0
>40°/0-	-2 6	83	83

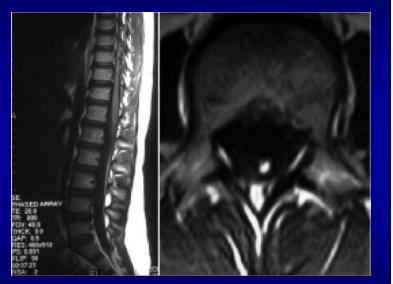
McGirt M et al (2009) JNS Peds

Effect of TSC release on scoliosis

- Higher risk of curve progression after TSC release:
 - Bigger curve (Cobb angle >35-45°)
 - Younger age (<10 yrs)
 - Skeletal immaturity (Risser 0-2)
 - Thoracic level myelomeningocele
 - Greater vertebral rotation
- Delays the need for definitive scoliosis surgery by several years

McGirt M (2009) JNS Peds; Altiok H (2016) Top SCI Rehabil; Bowman RM (2009) JNS Peds; Jankowsky PP (2016) Spine

When NOT to act


- Radiologists call "syrinx" when <3mm: dilation of the central canal
- Radiologists call "filum lipoma" when trace fat seen in filum (6% autopsy and MRI; 0.4% deterioration)
- Asymptomatic myelomeningocele
- Vast majority of cases
 with normal level conus

Cools MJ (2016) JNS Peds; Maher CO (2015) Pediatrics

When is there equipoise?

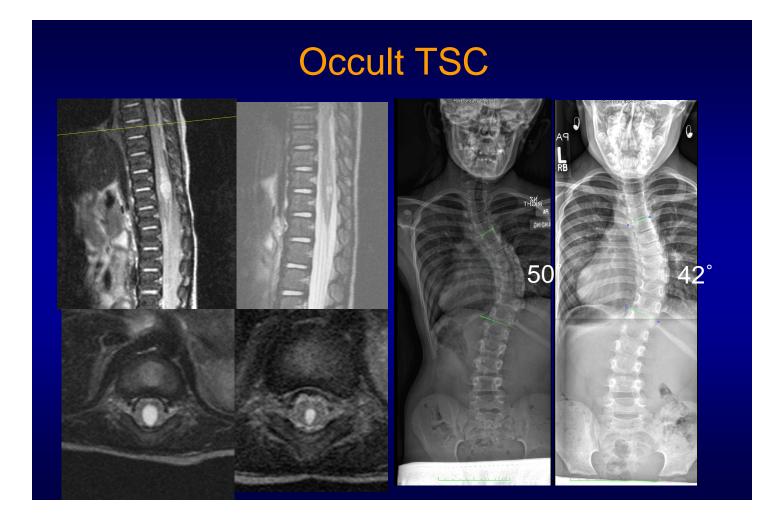
- Concept of an occult tethered cord syndrome (OCTS) first reported in 1990 by Khoury et al.
- Similar symptoms/signs of tethered cord syndrome but conus lies in a normal position at or above L2
- Can account for up to 20% of cases in large series

When is there equipoise?

- Key Question:
 - What percentage of patients with progressive scoliosis and are otherwise neurologically and urologically normal with a normal level conus have OTCS?
- Answer:
 - Unknown
 - No definitive test exists to identify OTSC

When is there equipoise?

- Consider TSC release if atypical or rapidly progressive curve under the following circumstances:
 - Any symptoms of TSC (progressive pain, weakness, sensory loss, urologic dysfunction)
 - Additional radiographic findings including fatty filum, syrinx, or vertebral body anomalies
- Why?:
 - Morbidity is low (1-2%)
 - Loss of potentials in the OR makes for a very bad day
 - EOS patients extremely difficult to manage
 - In some patients, it will buy some time



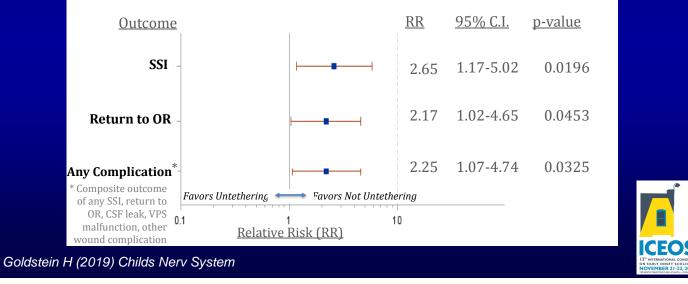
Occult TSC

- 3 month old girl born with sacralcoccygeal pit
- Gets MRI for evaluation
- Neuro exam normal

Occult TSC • At 6 years of PΑ LEFT age, develops rapidly progressive scoliosis over 6 38° 50° month period • Repeat MRI shows no change • Neuro exam remains normal 10/3/16 4/18/17 ICEOS

Conclusions

- When to Treat:
 - -Clinical symptoms of TSC
 - -MRI showing low level conus
 - Consider occult TSC if rapidly progressive curve with additional symptoms or radiographic signs
- When to Watch:
 - –Reports of "syrinx" < 3mm diameter</p>
 - -Reports of "fatty filum" with normal level conus and no other symptoms



When NOT to act

Results: Multivariate Analysis

Relative Risk of Post-Operative Complications Associated with Prophylactic Untethering

with multivariable logistic regression adjustment for age, gender, VPS, and level of myelomeningocele

