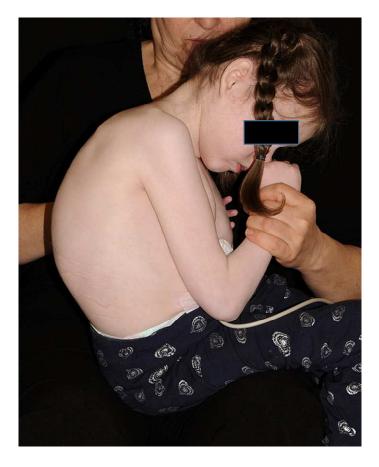
Technique Session 1: Challenges in Management Thoracic Kyphosis with Growth Friendly Implants Magnetically Controlled Growing Rods

> Ron El-Hawary, B.Eng, MD, MSc, FRCS(C) IWK Health Centre Halifax, Nova Scotia, Canada

> > November 20, 2019



Disclosures

- Grants / Research Support
 - Depuy-Synthes Spine
 - Medtronic Canada
 - Joint Solutions
 - EOS Imaging
- Consultant
 - Depuy-Synthes Spine
 - Medtronic Canada
 - Apifix Ltd.
 - Wishbone Medical
 - Globus Medical

8 yo girl with Cerebral Palsy (2015)

8 yo girl with CP (2015 to 2018)

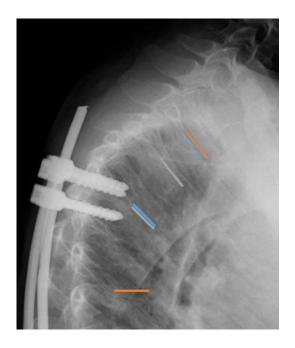
Pre-Implant

Immediate Post-Op

Most Recent

"Growth" from Insertion

True Growth Phase


How Does Kyphosis Affect Outcomes?

- Proximal Junctional Kyphosis
- Rod Breakage

General Definition of PJK

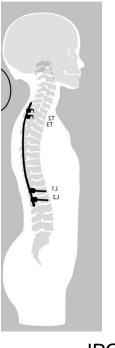
• Non-physiologic, sagittal plane angulation that occurs cephalad to an instrumented spine.

Yagi et al., Spine, 2011

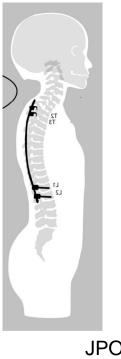
Ron El-Hawary, MD, MSc, FRCSC,* Peter Sturm, MD,† Patrick Cahill, MD,‡ Amer Samdani, MD,‡ Michael Vitale, MD, MPH,§ Peter Gabos, MD, || Nathan Bodin, MD,¶ Charles d'Amato, MD,# Colin Harris, MD,** Ammar Al Khudairy, MBChB, MRCSI, MCh,* and John T. Smith, MD††

- Maintain Sagittal Alignment
 - Spine vs. Rib Based Sagittal Alignment
 - 27.5 % risk of PJK (31% vs. 25%)
 - Older kids
 - Higher pre-op thoracic kyphosis (45 vs 29 degrees; p<0.05)
 - Higher pre-op pelvic incidence
 - Higher post-op positive sagittal balance

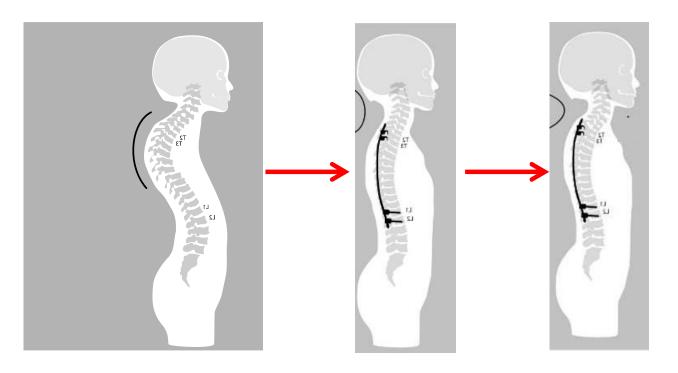
Ron El-Hawary, MD, MSc, FRCSC,* Peter Sturm, MD,† Patrick Cahill, MD,‡ Amer Samdani, MD,‡ Michael Vitale, MD, MPH,§ Peter Gabos, MD, Nathan Bodin, MD,¶ Charles d'Amato, MD,# Colin Harris, MD,** Ammar Al Khudairy, MBChB, MRCSI, MCh,* and John T. Smith, MD††


- Subjects with PJK (Pre-Insertion)
 - Older Age
 - Higher Thoracic Kyphosis

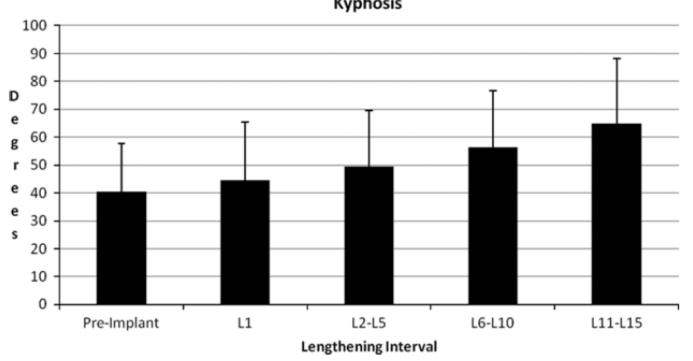
Ron El-Hawary, MD, MSc, FRCSC,* Peter Sturm, MD,† Patrick Cahill, MD,‡ Amer Samdani, MD,‡ Michael Vitale, MD, MPH,§ Peter Gabos, MD, Nathan Bodin, MD,¶ Charles d'Amato, MD,# Colin Harris, MD,** Ammar Al Khudairy, MBChB, MRCSI, MCh,* and John T. Smith, MD††


- Subjects with PJK (Post-Insertion)
 - Increased Cervical Lordosis
 - Normal Thoracic Kyphosis

Ron El-Hawary, MD, MSc, FRCSC,* Peter Sturm, MD,† Patrick Cahill, MD,‡ Amer Samdani, MD,‡ Michael Vitale, MD, MPH,§ Peter Gabos, MD, Nathan Bodin, MD,¶ Charles d'Amato, MD,# Colin Harris, MD,** Ammar Al Khudairy, MBChB, MRCSI, MCh,* and John T. Smith, MD††


- Subjects with PJK (Final Follow Up)
 - Increased Cervical Lordosis / Increased PJA
 - Normal Thoracic Kyphosis / Increase +SVA

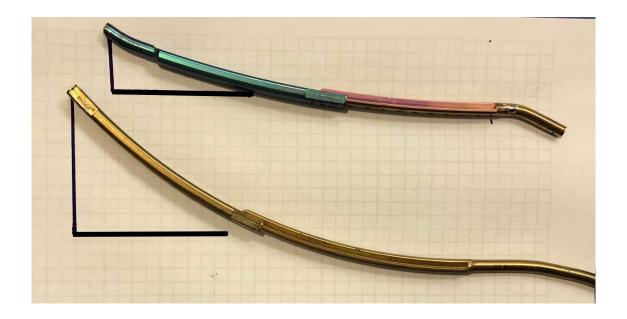
Pre-Operative Hyperkyphosis


• Subjects with PJK

Rib-based Distraction Surgery Maintains Total Spine Growth

Ron El-Hawary, MD, MSc, FRCS(C),* Amer Samdani, MD,† Jennie Wade, BS, CCRP, ‡ Melissa Smith, NP, ‡ John A. Heflin, MD, ‡ Joshua W. Klatt, MD, ‡ Michael G. Vitale, MD, § John T. Smith, MD, ‡ and Children's Spine Study Group

Kyphosis


Traditional Growth Friendly

• Radius of Curvature

Magnetically Controlled Growing Rods: Sagittal Plane Analysis and the Risk of Proximal Junctional Kyphosis

Purnendu Gupta, M.D., Felix Brassard, M.D., Kevin Morash, M.D., Jennifer Schottler, MPT, Alicia January, PhD., Ron El-Hawary, M.D., Ben Roye, M.D. MPH, Jeff Sawyer, M.D., Kim Hammerberg, M.D., Children's Spine Study Group

ICEOS 2018

Introduction/Methods

- Hypothesis:
 - MCGR insertion may have increased risk of proximal junctional kyphosis (PJK) due to actuator geometry
- Methods:
 - Multi-center, retrospective, CSSG registry data
 - Radiographic analysis pre-op, immediate post-op and 24 month follow up

Results

Data:

- N=67
- 34 (51%) male, 33 (49%) female
- 2-13 years of age
 - Idiopathic (n=28)
 - Neuromuscular (n=23)
 - Syndromic (n=10)
 - Congenital (n=6)

- M=7.4 (±2.7) years at initial implantation
- Pre-op curves: (M= 70.5±18.7 degrees)
- 443 lengthenings (M = 6.6/patient)

Results


Sagittal analysis data:

- Thoracic kyphosis (not significant)
 - Pre-op to Post-op (28.9 vs. 25.8, p=.289)
 - Pre-op to 24 months (28.9 vs. 32.1, p=.278)

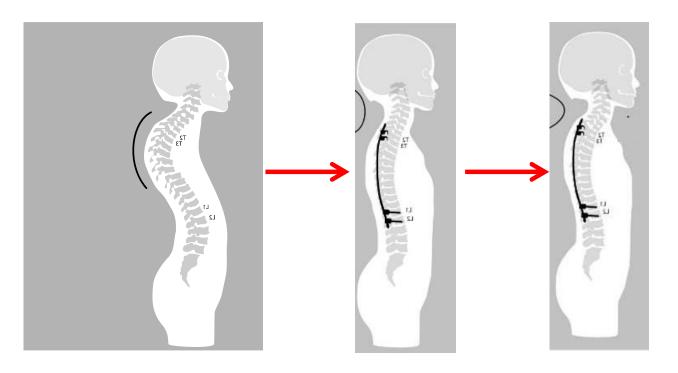
ON EARLY ONSET SCOLIOSIS NOVEMBER 21-22, 2019

• At 24-month evaluation, PJK developed in 4 of 33 (12%) patients

Results

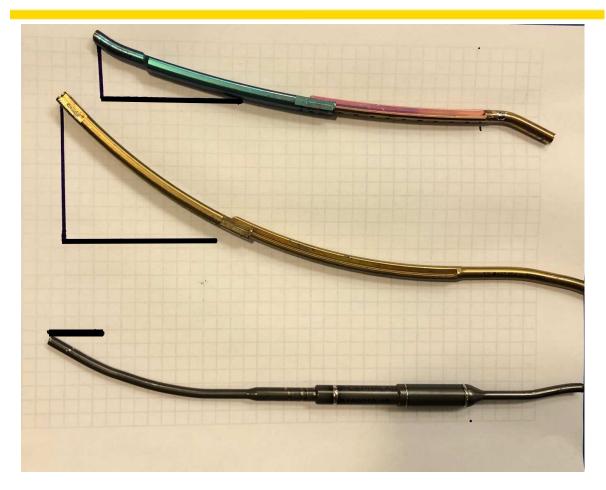
- 3 of 4 (75%) with PJK had pre-op max kyphosis > 50^o (vs. 36% in those without PJK)
- 2 of 4 (50%) had a pre-op PI-LL mismatch >30 (vs. 19% in those without PJK)
- Patients with PJK had a higher average pre-op SVA than those who did not develop PJK (62mm. vs. 13mm.)
- Centroid of actuator slightly higher in those with PJK

What is Unique about MCGR?


- Actuator Geometry Cannot Contour
 - By default, will decrease kyphosis

Pre-Operative Hyperkyphosis

• Subjects with PJK

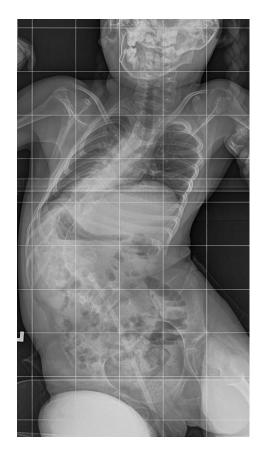


8 yo boy with SMA II (2016 to 2019) Pre-Implant Immediate Post-Op Most Recent "Growth" from Insertion True Growth Phase

ON EARLY ONSET SCOLIOSIS NOVEMBER 21-22, 2019

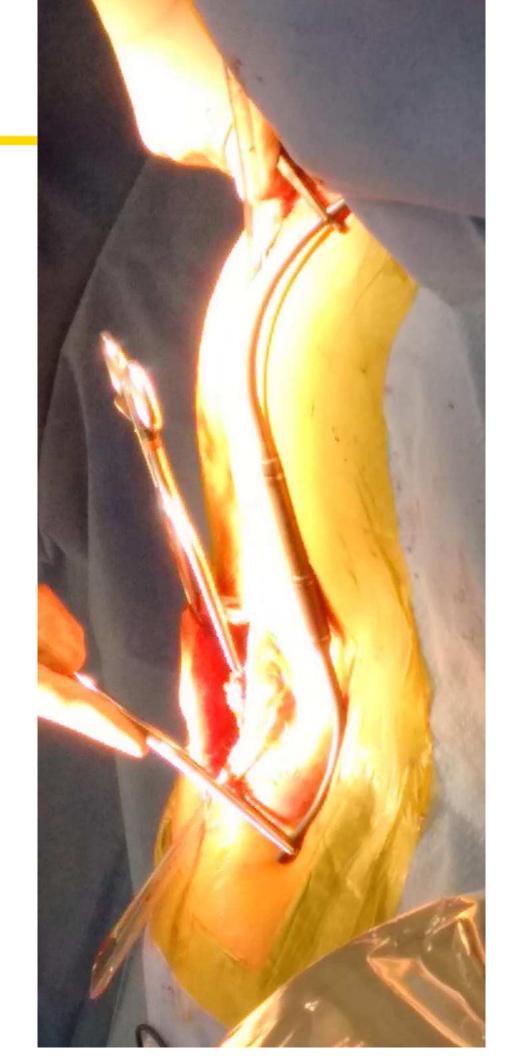
Strategies for Managing Hyperkyphosis

- Avoid acutely correcting the hyperkyphosis
 - Contour the rods into kyphosis
 - Take advantage of the straight actuator
- Anchors
 - Number of anchors
 - Shorten the working length

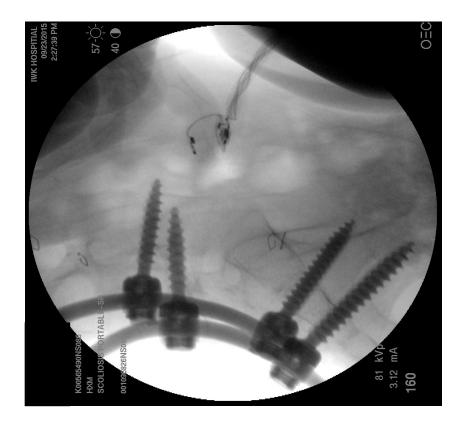


Strategies for Managing Hyperkyphosis

- Avoid acutely correcting the hyperkyphosis
 - Contour the rods into kyphosis
 - Take advantage of the straight actuator



8 yo Girl with Cerebral Palsy



8 yo girl with CP (2015 to 2018)

Pre-Implant

Immediate Post-Op

Most Recent

"Growth" from Insertion

True Growth Phase

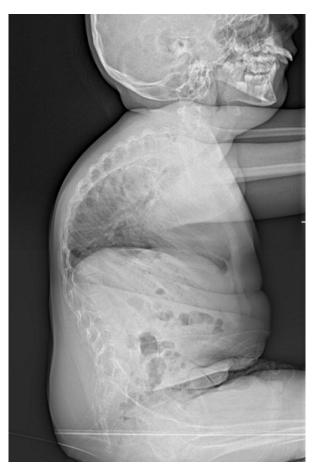
Strategies for Managing Hyperkyphosis

- Anchor Strategy
 - Number of anchors
 - Shorten the working length

Increase the Number of Proximal Anchors

Shorten the Working Length

• Working length: Unsupported spine



8 yo boy with SMA II (2016)

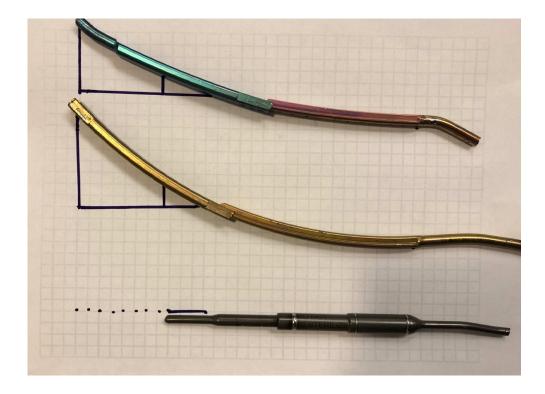
8 yo boy with SMA II (2016 to 2019) Pre-Implant Immediate Post-Op Most Recent "Growth" from Insertion True Growth Phase

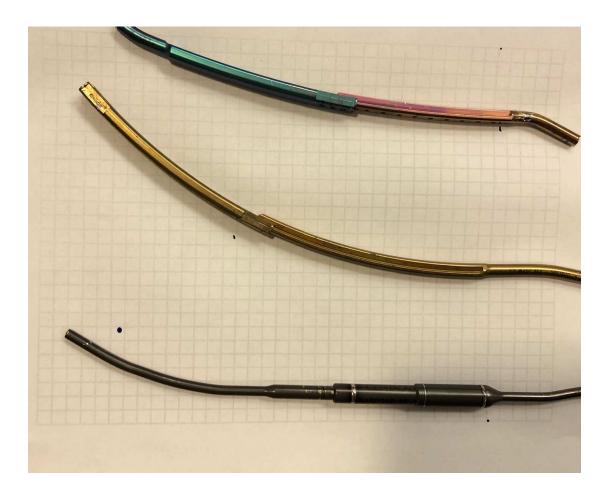
ON EARLY ONSET SCOLIOSIS NOVEMBER 21-22, 2019

Conclusions

- Hyperkyphosis can be managed effectively with MCGR
- Avoid acutely correcting the hyperkyphosis
 - Contour the rods into kyphosis
 - Take advantage of the straight actuator
- Anchors to increase rigidity of construct
 - Number of anchors
 - Shorten the working length

Thank You





3 yo girl with Fibrous Dysplasia(2016)

3 yo girl with FD (2016 to 2019)

Pre-Implant

Immediate Post-Op

Most Recent

"Growth" from Insertion

True Growth Phase

